Cargando…

MAP 4: a microtubule-associated protein specific for a subset of tissue microtubules

The cytological distribution of microtubule-associated protein 4 (MAP 4) (L. M. Parysek, C. F. Asnes, J. B. Olmsted, 1984, J. Cell Biol., 99:1309-1315) in mouse tissues has been examined. Adjacent 0.5-0.9- micron sections of polyethylene glycol-embedded tissues were incubated with affinity-purified...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1984
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113581/
https://www.ncbi.nlm.nih.gov/pubmed/6501426
_version_ 1782140218826031104
collection PubMed
description The cytological distribution of microtubule-associated protein 4 (MAP 4) (L. M. Parysek, C. F. Asnes, J. B. Olmsted, 1984, J. Cell Biol., 99:1309-1315) in mouse tissues has been examined. Adjacent 0.5-0.9- micron sections of polyethylene glycol-embedded tissues were incubated with affinity-purified MAP 4 or tubulin antibodies, and the immunofluorescent images were compared. Tubulin antibody labeling showed distinct microtubules in all tissues examined. MAP 4 antibody also labeled microtubule-like patterns, but the extent of MAP 4 reactivity was cell type-specific within each tissue. MAP 4 antibody labeled microtubules in vascular elements of all tissues and in other cells considered to have supportive functions, including Sertoli cells in the testis and glial elements in the nervous system. Microtubule patterns were also observed in cardiac, smooth, and skeletal (eye) muscle, podocytes in kidney, Kuppfer cells in liver, and spermatid manchettes. The only MAP 4-positive cells in which the pattern was not microtubule-like were the principal cells of the collecting ducts in kidney cortex, in which diffuse fluorescence was seen. MAP 4 antibody did not react with microtubule-rich neuronal elements of the central and peripheral nervous system, skeletal muscle from anterior thigh, liver parenchymal cells, columnar epithelial cells of the small intestine, and absorptive cells of the tubular component of the nephron. These observations indicate that MAP 4 may be associated with only certain kinds of cell functions as demonstrated by the preferential distribution with microtubules of defined cell types.
format Text
id pubmed-2113581
institution National Center for Biotechnology Information
language English
publishDate 1984
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21135812008-05-01 MAP 4: a microtubule-associated protein specific for a subset of tissue microtubules J Cell Biol Articles The cytological distribution of microtubule-associated protein 4 (MAP 4) (L. M. Parysek, C. F. Asnes, J. B. Olmsted, 1984, J. Cell Biol., 99:1309-1315) in mouse tissues has been examined. Adjacent 0.5-0.9- micron sections of polyethylene glycol-embedded tissues were incubated with affinity-purified MAP 4 or tubulin antibodies, and the immunofluorescent images were compared. Tubulin antibody labeling showed distinct microtubules in all tissues examined. MAP 4 antibody also labeled microtubule-like patterns, but the extent of MAP 4 reactivity was cell type-specific within each tissue. MAP 4 antibody labeled microtubules in vascular elements of all tissues and in other cells considered to have supportive functions, including Sertoli cells in the testis and glial elements in the nervous system. Microtubule patterns were also observed in cardiac, smooth, and skeletal (eye) muscle, podocytes in kidney, Kuppfer cells in liver, and spermatid manchettes. The only MAP 4-positive cells in which the pattern was not microtubule-like were the principal cells of the collecting ducts in kidney cortex, in which diffuse fluorescence was seen. MAP 4 antibody did not react with microtubule-rich neuronal elements of the central and peripheral nervous system, skeletal muscle from anterior thigh, liver parenchymal cells, columnar epithelial cells of the small intestine, and absorptive cells of the tubular component of the nephron. These observations indicate that MAP 4 may be associated with only certain kinds of cell functions as demonstrated by the preferential distribution with microtubules of defined cell types. The Rockefeller University Press 1984-12-01 /pmc/articles/PMC2113581/ /pubmed/6501426 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
MAP 4: a microtubule-associated protein specific for a subset of tissue microtubules
title MAP 4: a microtubule-associated protein specific for a subset of tissue microtubules
title_full MAP 4: a microtubule-associated protein specific for a subset of tissue microtubules
title_fullStr MAP 4: a microtubule-associated protein specific for a subset of tissue microtubules
title_full_unstemmed MAP 4: a microtubule-associated protein specific for a subset of tissue microtubules
title_short MAP 4: a microtubule-associated protein specific for a subset of tissue microtubules
title_sort map 4: a microtubule-associated protein specific for a subset of tissue microtubules
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113581/
https://www.ncbi.nlm.nih.gov/pubmed/6501426