Cargando…
Translation of mRNA injected into Xenopus oocytes is specifically inhibited by antisense RNA
The bacteriophage SP6 promoter and RNA polymerase were used to synthesize sense and antisense RNAs coding for the enzymes thymidine kinase (TK) and chloramphenicol acetyl transferase (CAT). Injection of antisense CAT RNA into frog oocytes inhibited expression of sense CAT mRNA. Similarly, antisense...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1985
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113735/ https://www.ncbi.nlm.nih.gov/pubmed/2411734 |
Sumario: | The bacteriophage SP6 promoter and RNA polymerase were used to synthesize sense and antisense RNAs coding for the enzymes thymidine kinase (TK) and chloramphenicol acetyl transferase (CAT). Injection of antisense CAT RNA into frog oocytes inhibited expression of sense CAT mRNA. Similarly, antisense TK RNA inhibited expression of sense TK mRNA. Antisense RNAs were stable in oocytes and had no detectable effect on either the expression of endogenous proteins or on the expression of nonhomologous RNA transcripts. CAT activity expressed from a plasmid transcribed in the oocyte nucleus was also inhibited by antisense RNA injected into the oocyte cytoplasm. The data suggest that antisense RNA will be useful in identifying the function of specific mRNA sequences during early development of the frog. |
---|