Cargando…

Glucocorticoids increase amylase mRNA levels, secretory organelles, and secretion in pancreatic acinar AR42J cells

Previous studies have suggested a role for glucocorticoids in the differentiation of the acinar pancreas. We have now used the rat tumor cell line AR42J, derived from the acinar pancreas, to directly study this effect of glucocorticoids in vitro. The steroid hormones dexamethasone, corticosterone, a...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1985
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113760/
https://www.ncbi.nlm.nih.gov/pubmed/2579957
_version_ 1782140260806819840
collection PubMed
description Previous studies have suggested a role for glucocorticoids in the differentiation of the acinar pancreas. We have now used the rat tumor cell line AR42J, derived from the acinar pancreas, to directly study this effect of glucocorticoids in vitro. The steroid hormones dexamethasone, corticosterone, aldosterone, and progesterone, but not estrogen, increased both the amylase content and the number of secretory granules of these cells. The potencies of the steroids were directly related to their effectiveness as glucocorticoids; dexamethasone was the most potent hormone and gave maximal effects at 100 nM. Morphometric analyses revealed that dexamethasone increased the volume density of granules 5.5-fold from 0.20 +/- 0.08 to 1.10 +/- 0.20% (n = 4) of the cytoplasmic volume. Dexamethasone treatment also increased the volume density of rough endoplasmic reticulum 2.4-fold from 1.20 +/- 0.09 to 2.86 +/- 0.30% (n = 5) of the cytoplasmic volume. After 48 h of dexamethasone treatment the cellular content of amylase increase eightfold from 2.8 +/- 0.4 to 22.6 +/- 3.8 U/mg protein (n = 6). This effect of dexamethasone was discernible after 12 h of incubation and approached maximal stimulation after 72 h of incubation. The increases in cellular amylase content were due to increased amylase synthesis as shown by specific immunoprecipitation of [35S]methionine- labeled proteins. Moreover, in vitro translation of cellular mRNA indicated that dexamethasone treatment increased amylase mRNA. Dexamethasone treatment also led to increased secretion of amylase in response to the secretagogue cholecystokinin. These data indicate, therefore, that glucocorticoids induce a more highly differentiated phenotype in AR42J pancreatic cells, and they suggest that glucocorticoids act via the enhanced transcription of specific mRNAs for acinar cell proteins.
format Text
id pubmed-2113760
institution National Center for Biotechnology Information
language English
publishDate 1985
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21137602008-05-01 Glucocorticoids increase amylase mRNA levels, secretory organelles, and secretion in pancreatic acinar AR42J cells J Cell Biol Articles Previous studies have suggested a role for glucocorticoids in the differentiation of the acinar pancreas. We have now used the rat tumor cell line AR42J, derived from the acinar pancreas, to directly study this effect of glucocorticoids in vitro. The steroid hormones dexamethasone, corticosterone, aldosterone, and progesterone, but not estrogen, increased both the amylase content and the number of secretory granules of these cells. The potencies of the steroids were directly related to their effectiveness as glucocorticoids; dexamethasone was the most potent hormone and gave maximal effects at 100 nM. Morphometric analyses revealed that dexamethasone increased the volume density of granules 5.5-fold from 0.20 +/- 0.08 to 1.10 +/- 0.20% (n = 4) of the cytoplasmic volume. Dexamethasone treatment also increased the volume density of rough endoplasmic reticulum 2.4-fold from 1.20 +/- 0.09 to 2.86 +/- 0.30% (n = 5) of the cytoplasmic volume. After 48 h of dexamethasone treatment the cellular content of amylase increase eightfold from 2.8 +/- 0.4 to 22.6 +/- 3.8 U/mg protein (n = 6). This effect of dexamethasone was discernible after 12 h of incubation and approached maximal stimulation after 72 h of incubation. The increases in cellular amylase content were due to increased amylase synthesis as shown by specific immunoprecipitation of [35S]methionine- labeled proteins. Moreover, in vitro translation of cellular mRNA indicated that dexamethasone treatment increased amylase mRNA. Dexamethasone treatment also led to increased secretion of amylase in response to the secretagogue cholecystokinin. These data indicate, therefore, that glucocorticoids induce a more highly differentiated phenotype in AR42J pancreatic cells, and they suggest that glucocorticoids act via the enhanced transcription of specific mRNAs for acinar cell proteins. The Rockefeller University Press 1985-04-01 /pmc/articles/PMC2113760/ /pubmed/2579957 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Glucocorticoids increase amylase mRNA levels, secretory organelles, and secretion in pancreatic acinar AR42J cells
title Glucocorticoids increase amylase mRNA levels, secretory organelles, and secretion in pancreatic acinar AR42J cells
title_full Glucocorticoids increase amylase mRNA levels, secretory organelles, and secretion in pancreatic acinar AR42J cells
title_fullStr Glucocorticoids increase amylase mRNA levels, secretory organelles, and secretion in pancreatic acinar AR42J cells
title_full_unstemmed Glucocorticoids increase amylase mRNA levels, secretory organelles, and secretion in pancreatic acinar AR42J cells
title_short Glucocorticoids increase amylase mRNA levels, secretory organelles, and secretion in pancreatic acinar AR42J cells
title_sort glucocorticoids increase amylase mrna levels, secretory organelles, and secretion in pancreatic acinar ar42j cells
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113760/
https://www.ncbi.nlm.nih.gov/pubmed/2579957