Cargando…

Stability and movement of mRNAs and their encoded proteins in Xenopus oocytes

The stability and movement of several polyadenylated (poly A+) and nonpolyadenylated (poly A-) mRNAs in Xenopus oocytes have been examined. At least 50% of the poly A+ mRNA molecules (9S rabbit globin mRNA, chicken ovalbumin, and lysozyme) were stable in oocytes over a 48- h period, irrespective of...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1985
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113764/
https://www.ncbi.nlm.nih.gov/pubmed/2858488
_version_ 1782140261743198208
collection PubMed
description The stability and movement of several polyadenylated (poly A+) and nonpolyadenylated (poly A-) mRNAs in Xenopus oocytes have been examined. At least 50% of the poly A+ mRNA molecules (9S rabbit globin mRNA, chicken ovalbumin, and lysozyme) were stable in oocytes over a 48- h period, irrespective of the amount injected. About 50% of injected poly A- reovirus mRNAs was degraded within the first 24 h of injection, irrespective of the amount injected, although no further degradation was observed over an additional 24 h. The movement of all poly A+ mRNAs injected at either the animal or vegetal pole of the oocyte was very slow. Little movement of RNA from the animal half to the vegetal half was observed even 48 h after injection. In contrast, similar amounts of mRNA were present in both halves 48 h after vegetal pole injection. Similar results were obtained after injection of poly A- reovirus mRNAs. The movement of the proteins encoded by the poly A+ mRNAs was studied in the 6-h period after injection when little mRNA movement had occurred. 85% of the globin synthesized accumulated in the animal half irrespective of injection site. The movement of the sequestered secretory proteins ovalbumin and lysozyme in the same oocytes as globin was much slower; very little lysozyme appeared in the half of the oocyte opposite the site of injection.
format Text
id pubmed-2113764
institution National Center for Biotechnology Information
language English
publishDate 1985
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21137642008-05-01 Stability and movement of mRNAs and their encoded proteins in Xenopus oocytes J Cell Biol Articles The stability and movement of several polyadenylated (poly A+) and nonpolyadenylated (poly A-) mRNAs in Xenopus oocytes have been examined. At least 50% of the poly A+ mRNA molecules (9S rabbit globin mRNA, chicken ovalbumin, and lysozyme) were stable in oocytes over a 48- h period, irrespective of the amount injected. About 50% of injected poly A- reovirus mRNAs was degraded within the first 24 h of injection, irrespective of the amount injected, although no further degradation was observed over an additional 24 h. The movement of all poly A+ mRNAs injected at either the animal or vegetal pole of the oocyte was very slow. Little movement of RNA from the animal half to the vegetal half was observed even 48 h after injection. In contrast, similar amounts of mRNA were present in both halves 48 h after vegetal pole injection. Similar results were obtained after injection of poly A- reovirus mRNAs. The movement of the proteins encoded by the poly A+ mRNAs was studied in the 6-h period after injection when little mRNA movement had occurred. 85% of the globin synthesized accumulated in the animal half irrespective of injection site. The movement of the sequestered secretory proteins ovalbumin and lysozyme in the same oocytes as globin was much slower; very little lysozyme appeared in the half of the oocyte opposite the site of injection. The Rockefeller University Press 1985-04-01 /pmc/articles/PMC2113764/ /pubmed/2858488 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Stability and movement of mRNAs and their encoded proteins in Xenopus oocytes
title Stability and movement of mRNAs and their encoded proteins in Xenopus oocytes
title_full Stability and movement of mRNAs and their encoded proteins in Xenopus oocytes
title_fullStr Stability and movement of mRNAs and their encoded proteins in Xenopus oocytes
title_full_unstemmed Stability and movement of mRNAs and their encoded proteins in Xenopus oocytes
title_short Stability and movement of mRNAs and their encoded proteins in Xenopus oocytes
title_sort stability and movement of mrnas and their encoded proteins in xenopus oocytes
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113764/
https://www.ncbi.nlm.nih.gov/pubmed/2858488