Cargando…

Analysis of the spatial organization of microtubule-associated proteins

We have developed microdensitometer-computer correlation techniques to analyze the arrangement of microtubule arms and bridges (i.e., microtubule-associated proteins [MAPs]). A microdensitometer was used to scan immediately adjacent to the wall of longitudinally sectioned microtubules in positive tr...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1986
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113840/
https://www.ncbi.nlm.nih.gov/pubmed/3733879
_version_ 1782140279620370432
collection PubMed
description We have developed microdensitometer-computer correlation techniques to analyze the arrangement of microtubule arms and bridges (i.e., microtubule-associated proteins [MAPs]). A microdensitometer was used to scan immediately adjacent to the wall of longitudinally sectioned microtubules in positive transparency electron micrographs. Signal enhancement procedures were applied to the digitized densitometer output to produce a binary sequence representing the apparent axial spacing of MAP projections. These enhanced records were analyzed in two ways. (a) Autocorrelograms were formed for each record and correlogram peaks from a group of scans were pooled to construct a peak frequency histogram. (b) Cross-correlation was used to optimize the match between each enhanced record and templates predicted by different models of MAP organization. Seven symmetrical superlattices were considered as well as single axial repeats. The analyses were repeated with randomly generated records to establish confidence levels. Using the above methods, we analyzed the intrarow bridges of the Saccinobaculus axostyle and the MAP2 projections associated with brain microtubules synthesized in vitro. We confirmed a strict 16-nm axial repeat for axostyle bridges. For 26 MAP2 records, the only significant match was to a 12-dimer superlattice model (P less than 0.002). However, we also found some axial distances between MAP2 projections which were compatible with the additional spacings predicted by a 6-dimer superlattice. Therefore, we propose that MAP2 projections are arranged in a "saturated 12-dimer, unsaturated 6-dimer" superlattice, which may be characteristic of a wide variety of MAPs.
format Text
id pubmed-2113840
institution National Center for Biotechnology Information
language English
publishDate 1986
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21138402008-05-01 Analysis of the spatial organization of microtubule-associated proteins J Cell Biol Articles We have developed microdensitometer-computer correlation techniques to analyze the arrangement of microtubule arms and bridges (i.e., microtubule-associated proteins [MAPs]). A microdensitometer was used to scan immediately adjacent to the wall of longitudinally sectioned microtubules in positive transparency electron micrographs. Signal enhancement procedures were applied to the digitized densitometer output to produce a binary sequence representing the apparent axial spacing of MAP projections. These enhanced records were analyzed in two ways. (a) Autocorrelograms were formed for each record and correlogram peaks from a group of scans were pooled to construct a peak frequency histogram. (b) Cross-correlation was used to optimize the match between each enhanced record and templates predicted by different models of MAP organization. Seven symmetrical superlattices were considered as well as single axial repeats. The analyses were repeated with randomly generated records to establish confidence levels. Using the above methods, we analyzed the intrarow bridges of the Saccinobaculus axostyle and the MAP2 projections associated with brain microtubules synthesized in vitro. We confirmed a strict 16-nm axial repeat for axostyle bridges. For 26 MAP2 records, the only significant match was to a 12-dimer superlattice model (P less than 0.002). However, we also found some axial distances between MAP2 projections which were compatible with the additional spacings predicted by a 6-dimer superlattice. Therefore, we propose that MAP2 projections are arranged in a "saturated 12-dimer, unsaturated 6-dimer" superlattice, which may be characteristic of a wide variety of MAPs. The Rockefeller University Press 1986-08-01 /pmc/articles/PMC2113840/ /pubmed/3733879 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Analysis of the spatial organization of microtubule-associated proteins
title Analysis of the spatial organization of microtubule-associated proteins
title_full Analysis of the spatial organization of microtubule-associated proteins
title_fullStr Analysis of the spatial organization of microtubule-associated proteins
title_full_unstemmed Analysis of the spatial organization of microtubule-associated proteins
title_short Analysis of the spatial organization of microtubule-associated proteins
title_sort analysis of the spatial organization of microtubule-associated proteins
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113840/
https://www.ncbi.nlm.nih.gov/pubmed/3733879