Cargando…

Lateral diffusion in nuclear membranes

Chemical modification of rat liver nuclei with citraconic anhydride selectively removed outer nuclear membrane. This conclusion was based on (a) transmission electron microscopy, (b) lipid analysis, (c) lamin B as an inner membrane-associated marker, and (d) the demonstration of phospholipid lateral...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1985
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113861/
https://www.ncbi.nlm.nih.gov/pubmed/3988794
Descripción
Sumario:Chemical modification of rat liver nuclei with citraconic anhydride selectively removed outer nuclear membrane. This conclusion was based on (a) transmission electron microscopy, (b) lipid analysis, (c) lamin B as an inner membrane-associated marker, and (d) the demonstration of phospholipid lateral mobility on outer membrane-depleted nuclei as a criteria for inner membrane integrity. Addition of urea or N- ethylmaleimide resulted in the additional disruption of inner membrane. Fluorescence photobleaching was used to determine the long range (greater than 4 microns) lateral transport of lectin receptors and a phospholipid analog in both membranes. The diffusion coefficient for wheat germ agglutinin on whole nuclei was 3.9 X 10(-10) cm2/s whereas the diffusion coefficient for wheat germ agglutinin in outer membrane- depleted nuclei was less than or equal to 10(-12) cm2/s. Phospholipid mobilities were the same in whole and outer membrane-depleted nuclei (3.8 X 10(-9) cm2/s). The protein diffusion differences observed between whole and outer membrane-depleted nuclei may be interpreted in the context of two functionally different membrane systems that compose the double bilayer of the nucleus.