Cargando…
Calcium restriction prolongs metaphase in dividing Tradescantia stamen hair cells
Agents that lower extracellular calcium concentration (EGTA) or modulate calcium transport (lanthanum or D600) have been applied to dividing stamen hair cells of Tradescantia and analyzed for their ability to change the following: (a) the time required to progress from nuclear envelope breakdown to...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1985
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113865/ https://www.ncbi.nlm.nih.gov/pubmed/3921550 |
_version_ | 1782140285395927040 |
---|---|
collection | PubMed |
description | Agents that lower extracellular calcium concentration (EGTA) or modulate calcium transport (lanthanum or D600) have been applied to dividing stamen hair cells of Tradescantia and analyzed for their ability to change the following: (a) the time required to progress from nuclear envelope breakdown to the onset of anaphase (metaphase transit time), (b) the time required to progress from anaphase to the initiation of the cell plate, and (c) the rate of chromosome motion in anaphase. Control cells complete metaphase in 32 min, initiate a cell plate in 19 min, and display a chromosome motion rate of 1.45 micron/min. If cells are treated with a calcium-EGTA buffer (pCa 8) for 4 h, the metaphase transit time is increased to 53 min without any change in the time of cell plate formation or the rate of chromosome motion. Lanthanum and D600, under conditions in which their access to the plasmalemma has been facilitated by pretreating the cells with cutinase, also markedly extend metaphase and in several instances permanently arrest cells. Lanthanum, however, produce little or no change in cell plate initiation or the rate of chromosome motion. Microscopic observations of the mitotic apparatus in calcium-stressed cells reveal normal chromatin condensation and metaphase progression. Chromosomes partly untwine but remain attached at their kinetochores. It is suggested that a flux of calcium, derived from the extracellular compartment, may cause the final splitting of sister chromosomes and trigger the onset of anaphase. However, once anaphase has begun, chromosome motion and cell plate initiation proceed normally even under conditions of extracellular calcium restriction. |
format | Text |
id | pubmed-2113865 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1985 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21138652008-05-01 Calcium restriction prolongs metaphase in dividing Tradescantia stamen hair cells J Cell Biol Articles Agents that lower extracellular calcium concentration (EGTA) or modulate calcium transport (lanthanum or D600) have been applied to dividing stamen hair cells of Tradescantia and analyzed for their ability to change the following: (a) the time required to progress from nuclear envelope breakdown to the onset of anaphase (metaphase transit time), (b) the time required to progress from anaphase to the initiation of the cell plate, and (c) the rate of chromosome motion in anaphase. Control cells complete metaphase in 32 min, initiate a cell plate in 19 min, and display a chromosome motion rate of 1.45 micron/min. If cells are treated with a calcium-EGTA buffer (pCa 8) for 4 h, the metaphase transit time is increased to 53 min without any change in the time of cell plate formation or the rate of chromosome motion. Lanthanum and D600, under conditions in which their access to the plasmalemma has been facilitated by pretreating the cells with cutinase, also markedly extend metaphase and in several instances permanently arrest cells. Lanthanum, however, produce little or no change in cell plate initiation or the rate of chromosome motion. Microscopic observations of the mitotic apparatus in calcium-stressed cells reveal normal chromatin condensation and metaphase progression. Chromosomes partly untwine but remain attached at their kinetochores. It is suggested that a flux of calcium, derived from the extracellular compartment, may cause the final splitting of sister chromosomes and trigger the onset of anaphase. However, once anaphase has begun, chromosome motion and cell plate initiation proceed normally even under conditions of extracellular calcium restriction. The Rockefeller University Press 1985-05-01 /pmc/articles/PMC2113865/ /pubmed/3921550 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Calcium restriction prolongs metaphase in dividing Tradescantia stamen hair cells |
title | Calcium restriction prolongs metaphase in dividing Tradescantia stamen hair cells |
title_full | Calcium restriction prolongs metaphase in dividing Tradescantia stamen hair cells |
title_fullStr | Calcium restriction prolongs metaphase in dividing Tradescantia stamen hair cells |
title_full_unstemmed | Calcium restriction prolongs metaphase in dividing Tradescantia stamen hair cells |
title_short | Calcium restriction prolongs metaphase in dividing Tradescantia stamen hair cells |
title_sort | calcium restriction prolongs metaphase in dividing tradescantia stamen hair cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113865/ https://www.ncbi.nlm.nih.gov/pubmed/3921550 |