Cargando…

Calcium restriction prolongs metaphase in dividing Tradescantia stamen hair cells

Agents that lower extracellular calcium concentration (EGTA) or modulate calcium transport (lanthanum or D600) have been applied to dividing stamen hair cells of Tradescantia and analyzed for their ability to change the following: (a) the time required to progress from nuclear envelope breakdown to...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1985
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113865/
https://www.ncbi.nlm.nih.gov/pubmed/3921550
_version_ 1782140285395927040
collection PubMed
description Agents that lower extracellular calcium concentration (EGTA) or modulate calcium transport (lanthanum or D600) have been applied to dividing stamen hair cells of Tradescantia and analyzed for their ability to change the following: (a) the time required to progress from nuclear envelope breakdown to the onset of anaphase (metaphase transit time), (b) the time required to progress from anaphase to the initiation of the cell plate, and (c) the rate of chromosome motion in anaphase. Control cells complete metaphase in 32 min, initiate a cell plate in 19 min, and display a chromosome motion rate of 1.45 micron/min. If cells are treated with a calcium-EGTA buffer (pCa 8) for 4 h, the metaphase transit time is increased to 53 min without any change in the time of cell plate formation or the rate of chromosome motion. Lanthanum and D600, under conditions in which their access to the plasmalemma has been facilitated by pretreating the cells with cutinase, also markedly extend metaphase and in several instances permanently arrest cells. Lanthanum, however, produce little or no change in cell plate initiation or the rate of chromosome motion. Microscopic observations of the mitotic apparatus in calcium-stressed cells reveal normal chromatin condensation and metaphase progression. Chromosomes partly untwine but remain attached at their kinetochores. It is suggested that a flux of calcium, derived from the extracellular compartment, may cause the final splitting of sister chromosomes and trigger the onset of anaphase. However, once anaphase has begun, chromosome motion and cell plate initiation proceed normally even under conditions of extracellular calcium restriction.
format Text
id pubmed-2113865
institution National Center for Biotechnology Information
language English
publishDate 1985
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21138652008-05-01 Calcium restriction prolongs metaphase in dividing Tradescantia stamen hair cells J Cell Biol Articles Agents that lower extracellular calcium concentration (EGTA) or modulate calcium transport (lanthanum or D600) have been applied to dividing stamen hair cells of Tradescantia and analyzed for their ability to change the following: (a) the time required to progress from nuclear envelope breakdown to the onset of anaphase (metaphase transit time), (b) the time required to progress from anaphase to the initiation of the cell plate, and (c) the rate of chromosome motion in anaphase. Control cells complete metaphase in 32 min, initiate a cell plate in 19 min, and display a chromosome motion rate of 1.45 micron/min. If cells are treated with a calcium-EGTA buffer (pCa 8) for 4 h, the metaphase transit time is increased to 53 min without any change in the time of cell plate formation or the rate of chromosome motion. Lanthanum and D600, under conditions in which their access to the plasmalemma has been facilitated by pretreating the cells with cutinase, also markedly extend metaphase and in several instances permanently arrest cells. Lanthanum, however, produce little or no change in cell plate initiation or the rate of chromosome motion. Microscopic observations of the mitotic apparatus in calcium-stressed cells reveal normal chromatin condensation and metaphase progression. Chromosomes partly untwine but remain attached at their kinetochores. It is suggested that a flux of calcium, derived from the extracellular compartment, may cause the final splitting of sister chromosomes and trigger the onset of anaphase. However, once anaphase has begun, chromosome motion and cell plate initiation proceed normally even under conditions of extracellular calcium restriction. The Rockefeller University Press 1985-05-01 /pmc/articles/PMC2113865/ /pubmed/3921550 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Calcium restriction prolongs metaphase in dividing Tradescantia stamen hair cells
title Calcium restriction prolongs metaphase in dividing Tradescantia stamen hair cells
title_full Calcium restriction prolongs metaphase in dividing Tradescantia stamen hair cells
title_fullStr Calcium restriction prolongs metaphase in dividing Tradescantia stamen hair cells
title_full_unstemmed Calcium restriction prolongs metaphase in dividing Tradescantia stamen hair cells
title_short Calcium restriction prolongs metaphase in dividing Tradescantia stamen hair cells
title_sort calcium restriction prolongs metaphase in dividing tradescantia stamen hair cells
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113865/
https://www.ncbi.nlm.nih.gov/pubmed/3921550