Cargando…

Control by fibroblast growth factor of differentiation in the BC3H1 muscle cell line

The regulation of creatine phosphokinase (CPK) expression by polypeptide growth factors has been examined in the clonal mouse muscle BC3H1 cell line. After arrest of cell growth by exposure to low concentrations of serum, BC3H1 cells accumulate high levels of muscle- specific proteins including CPK....

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1985
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113871/
https://www.ncbi.nlm.nih.gov/pubmed/3988800
_version_ 1782140286782144512
collection PubMed
description The regulation of creatine phosphokinase (CPK) expression by polypeptide growth factors has been examined in the clonal mouse muscle BC3H1 cell line. After arrest of cell growth by exposure to low concentrations of serum, BC3H1 cells accumulate high levels of muscle- specific proteins including CPK. The induction of this enzyme is reversible in the presence of high concentrations of fetal calf serum, which cause quiescent, differentiated cells to reenter the cell cycle. Under these conditions, the rate of CPK synthesis is drastically reduced. We show in the present communication that either pituitary- derived fibroblast growth factor (FGF) or brain-derived FGF are as effective as serum in repressing the synthesis of CPK when added to quiescent, differentiated cells. The decrease in the rate of synthesis of CPK occurs within 22 h after the addition of pituitary FGF to the cells. Pituitary FGF had very little effect, if any, on the rate CPK degradation. The overall rate of protein synthesis and the pattern of synthesis of the major polypeptides made by these cells was not altered by the addition of FGF. Although pituitary FGF was mitogenic for BC3H1 cells, the rate of cell growth was not absolutely correlated with the extent of repression of CPK. Brain-derived FGF fully repressed CPK induction under conditions where it showed no significant mitogenic activity. These results show that the expression of a muscle-specific protein, CPK, can be controlled by a single defined polypeptide growth factor in fully differentiated cultures, and that initiation of cell division is not required for their regulation to take place.
format Text
id pubmed-2113871
institution National Center for Biotechnology Information
language English
publishDate 1985
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21138712008-05-01 Control by fibroblast growth factor of differentiation in the BC3H1 muscle cell line J Cell Biol Articles The regulation of creatine phosphokinase (CPK) expression by polypeptide growth factors has been examined in the clonal mouse muscle BC3H1 cell line. After arrest of cell growth by exposure to low concentrations of serum, BC3H1 cells accumulate high levels of muscle- specific proteins including CPK. The induction of this enzyme is reversible in the presence of high concentrations of fetal calf serum, which cause quiescent, differentiated cells to reenter the cell cycle. Under these conditions, the rate of CPK synthesis is drastically reduced. We show in the present communication that either pituitary- derived fibroblast growth factor (FGF) or brain-derived FGF are as effective as serum in repressing the synthesis of CPK when added to quiescent, differentiated cells. The decrease in the rate of synthesis of CPK occurs within 22 h after the addition of pituitary FGF to the cells. Pituitary FGF had very little effect, if any, on the rate CPK degradation. The overall rate of protein synthesis and the pattern of synthesis of the major polypeptides made by these cells was not altered by the addition of FGF. Although pituitary FGF was mitogenic for BC3H1 cells, the rate of cell growth was not absolutely correlated with the extent of repression of CPK. Brain-derived FGF fully repressed CPK induction under conditions where it showed no significant mitogenic activity. These results show that the expression of a muscle-specific protein, CPK, can be controlled by a single defined polypeptide growth factor in fully differentiated cultures, and that initiation of cell division is not required for their regulation to take place. The Rockefeller University Press 1985-05-01 /pmc/articles/PMC2113871/ /pubmed/3988800 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Control by fibroblast growth factor of differentiation in the BC3H1 muscle cell line
title Control by fibroblast growth factor of differentiation in the BC3H1 muscle cell line
title_full Control by fibroblast growth factor of differentiation in the BC3H1 muscle cell line
title_fullStr Control by fibroblast growth factor of differentiation in the BC3H1 muscle cell line
title_full_unstemmed Control by fibroblast growth factor of differentiation in the BC3H1 muscle cell line
title_short Control by fibroblast growth factor of differentiation in the BC3H1 muscle cell line
title_sort control by fibroblast growth factor of differentiation in the bc3h1 muscle cell line
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113871/
https://www.ncbi.nlm.nih.gov/pubmed/3988800