Cargando…

Slow posttranslational modification of a neurofilament protein

The synthesis and subsequent modification of neurofilament (NF) polypeptides has been examined in pulse-chase experiments, using cultured chick spinal cord neurons. Fluorography of the [35S]methionine- labeled cytoskeletal proteins, after separation by two-dimensional gel electrophoresis, revealed t...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1985
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113875/
https://www.ncbi.nlm.nih.gov/pubmed/4039329
_version_ 1782140287734251520
collection PubMed
description The synthesis and subsequent modification of neurofilament (NF) polypeptides has been examined in pulse-chase experiments, using cultured chick spinal cord neurons. Fluorography of the [35S]methionine- labeled cytoskeletal proteins, after separation by two-dimensional gel electrophoresis, revealed that (a) the mid-size chicken NF protein, NF- M160, is synthesized as a smaller and more basic precursor, NF-M130; (b) beginning approximately 8 h after translation, NF-M130 slowly and continuously becomes larger and more acidic, attaining the size and charge of NF-M160 16 or more h later, and undergoing no further change in mobility for many days thereafter; and (c) in contrast, the low molecular weight NF protein, NF-L, is synthesized as such, and undergoes no subsequent change in apparent size or charge. Additional experiments provided evidence that the conversion of NF-M130 to NF-M160 is due, at least in part, to phosphorylation: (a) Incubation of similar cultures in 32PO4 resulted in incorporation into NF-M160 and transitional forms, but not into NF-M130. (b) An antiserum to NF-M160 was found by immunoblot analysis to bind strongly to untreated NF-M160, but poorly to phosphatase-treated NF-M160, and not at all to NF-M130. It has already been demonstrated (Bennett, G. S., S. J. Tapscott, C. DiLullo, and H. Holtzer, 1984, Brain Res., 304:291-302) that this anti- NF-M160 fails to stain the soma of motor neurons in sections of chick spinal cord, but detects an increasing gradient of immunoreactivity in the proximal axons. These results, together with the known kinetics of axoplasmic transport of NF, suggest that the mid-size chicken NF protein is synthesized as NF-M130 and is extensively modified, at least in part by phosphorylation, to become NF-M160 during transport along proximal neurites. Once maximally modified, NF-M160 undergoes no further net change during transport along distal neurites.
format Text
id pubmed-2113875
institution National Center for Biotechnology Information
language English
publishDate 1985
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21138752008-05-01 Slow posttranslational modification of a neurofilament protein J Cell Biol Articles The synthesis and subsequent modification of neurofilament (NF) polypeptides has been examined in pulse-chase experiments, using cultured chick spinal cord neurons. Fluorography of the [35S]methionine- labeled cytoskeletal proteins, after separation by two-dimensional gel electrophoresis, revealed that (a) the mid-size chicken NF protein, NF- M160, is synthesized as a smaller and more basic precursor, NF-M130; (b) beginning approximately 8 h after translation, NF-M130 slowly and continuously becomes larger and more acidic, attaining the size and charge of NF-M160 16 or more h later, and undergoing no further change in mobility for many days thereafter; and (c) in contrast, the low molecular weight NF protein, NF-L, is synthesized as such, and undergoes no subsequent change in apparent size or charge. Additional experiments provided evidence that the conversion of NF-M130 to NF-M160 is due, at least in part, to phosphorylation: (a) Incubation of similar cultures in 32PO4 resulted in incorporation into NF-M160 and transitional forms, but not into NF-M130. (b) An antiserum to NF-M160 was found by immunoblot analysis to bind strongly to untreated NF-M160, but poorly to phosphatase-treated NF-M160, and not at all to NF-M130. It has already been demonstrated (Bennett, G. S., S. J. Tapscott, C. DiLullo, and H. Holtzer, 1984, Brain Res., 304:291-302) that this anti- NF-M160 fails to stain the soma of motor neurons in sections of chick spinal cord, but detects an increasing gradient of immunoreactivity in the proximal axons. These results, together with the known kinetics of axoplasmic transport of NF, suggest that the mid-size chicken NF protein is synthesized as NF-M130 and is extensively modified, at least in part by phosphorylation, to become NF-M160 during transport along proximal neurites. Once maximally modified, NF-M160 undergoes no further net change during transport along distal neurites. The Rockefeller University Press 1985-05-01 /pmc/articles/PMC2113875/ /pubmed/4039329 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Slow posttranslational modification of a neurofilament protein
title Slow posttranslational modification of a neurofilament protein
title_full Slow posttranslational modification of a neurofilament protein
title_fullStr Slow posttranslational modification of a neurofilament protein
title_full_unstemmed Slow posttranslational modification of a neurofilament protein
title_short Slow posttranslational modification of a neurofilament protein
title_sort slow posttranslational modification of a neurofilament protein
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113875/
https://www.ncbi.nlm.nih.gov/pubmed/4039329