Cargando…
Blocked coated pits in AtT20 cells result from endocytosis of budding retrovirions
AtT20 cells support the replication of two endogenous retroviruses, a murine leukemia virus and a mouse mammary tumor virus. On glass or plastic substrates, AtT20 cells grow in clumps. In this situation, retroviruses budding from the plasma membrane of one cell can, on rare occasions, be invested by...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1985
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113951/ https://www.ncbi.nlm.nih.gov/pubmed/2865267 |
Sumario: | AtT20 cells support the replication of two endogenous retroviruses, a murine leukemia virus and a mouse mammary tumor virus. On glass or plastic substrates, AtT20 cells grow in clumps. In this situation, retroviruses budding from the plasma membrane of one cell can, on rare occasions, be invested by coated pits in the plasma membranes of contiguous cells. These pits can invaginate to depths of 2,000-4,000 A within the cytoplasm drawing with them the viral buds which remain connected to their parental cells by tubular stalks, some of which are only 225 +/- 15 A in diameter. These stalks run down the straight necks of the pits from the buds to the parental cell surfaces. Several lines of evidence indicate that these unique structures are blocked such that neither endocytosis nor budding can go to completion, and that they persist for several hours. The properties of these blocked coated pits are relevant to models of both endocytosis and viral budding. First, they indicate that the invagination of a coated pit is not absolutely dependent on its pinching off to form a coated vesicle, but that uncoating appears to be dependent upon the generation of a free vesicle. Secondly, they suggest that the final stages in the maturation of a retroviral core into a mature nucleoid are dependent on the detachment of the bud from its parental cell and that the driving force of budding is the association of viral transmembrane proteins with viral core proteins. An explanation is offered to account for the formation of these structures despite the phenomenon of viral interference. |
---|