Cargando…
pH-induced alterations in the fusogenic spike protein of Semliki Forest virus
The spike glycoproteins of Semliki Forest virus mediate membrane fusion between the viral envelope and cholesterol-containing target membranes under conditions of mildly acidic pH (pH less than 6.2). The fusion reaction is critical for the infectious cycle, catalyzing virus penetration from the acid...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1985
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114024/ https://www.ncbi.nlm.nih.gov/pubmed/3905823 |
_version_ | 1782140322684338176 |
---|---|
collection | PubMed |
description | The spike glycoproteins of Semliki Forest virus mediate membrane fusion between the viral envelope and cholesterol-containing target membranes under conditions of mildly acidic pH (pH less than 6.2). The fusion reaction is critical for the infectious cycle, catalyzing virus penetration from the acidic endosome compartment. To define the role of the viral spike glycoproteins in the fusion reaction, conformational changes in the spikes at acid pH were studied using protease digestion and binding assays to liposomes and nonionic detergent. A method was also developed to prepare fragments of both transmembrane subunit glycopolypeptides of the spike, E1 and E2, which lacked the hydrophobic anchor peptides. Unlike the intact spikes the fragments were monomeric and therefore useful for obtaining information on conformational changes in individual subunits. The results showed that both E1 and E2 undergo irreversible conformational changes at the pH of fusion, that the conformational change of E1 depends, in addition to acidic pH, on the presence of cholesterol, and that no major changes in the solubility properties of the spikes takes place. On the basis of these findings it was concluded that fusion involves both subunits of the spike and that E1 confers the stereo-specific sterol requirement. The results indicated, moreover, that acid-induced fusion of Semliki Forest virus differs in important respects from that of influenza virus, another well-defined model system for protein-mediated membrane fusion. |
format | Text |
id | pubmed-2114024 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1985 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21140242008-05-01 pH-induced alterations in the fusogenic spike protein of Semliki Forest virus J Cell Biol Articles The spike glycoproteins of Semliki Forest virus mediate membrane fusion between the viral envelope and cholesterol-containing target membranes under conditions of mildly acidic pH (pH less than 6.2). The fusion reaction is critical for the infectious cycle, catalyzing virus penetration from the acidic endosome compartment. To define the role of the viral spike glycoproteins in the fusion reaction, conformational changes in the spikes at acid pH were studied using protease digestion and binding assays to liposomes and nonionic detergent. A method was also developed to prepare fragments of both transmembrane subunit glycopolypeptides of the spike, E1 and E2, which lacked the hydrophobic anchor peptides. Unlike the intact spikes the fragments were monomeric and therefore useful for obtaining information on conformational changes in individual subunits. The results showed that both E1 and E2 undergo irreversible conformational changes at the pH of fusion, that the conformational change of E1 depends, in addition to acidic pH, on the presence of cholesterol, and that no major changes in the solubility properties of the spikes takes place. On the basis of these findings it was concluded that fusion involves both subunits of the spike and that E1 confers the stereo-specific sterol requirement. The results indicated, moreover, that acid-induced fusion of Semliki Forest virus differs in important respects from that of influenza virus, another well-defined model system for protein-mediated membrane fusion. The Rockefeller University Press 1985-12-01 /pmc/articles/PMC2114024/ /pubmed/3905823 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles pH-induced alterations in the fusogenic spike protein of Semliki Forest virus |
title | pH-induced alterations in the fusogenic spike protein of Semliki Forest virus |
title_full | pH-induced alterations in the fusogenic spike protein of Semliki Forest virus |
title_fullStr | pH-induced alterations in the fusogenic spike protein of Semliki Forest virus |
title_full_unstemmed | pH-induced alterations in the fusogenic spike protein of Semliki Forest virus |
title_short | pH-induced alterations in the fusogenic spike protein of Semliki Forest virus |
title_sort | ph-induced alterations in the fusogenic spike protein of semliki forest virus |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114024/ https://www.ncbi.nlm.nih.gov/pubmed/3905823 |