Cargando…

Expression of muscle genes in heterokaryons depends on gene dosage

We report that gene dosage, or the ratio of nuclei from two cell types fused to form a heterokaryon, affects the time course of differentiation-specific gene expression. The rate of appearance of the human muscle antigen, 5.1H11, is significantly faster in heterokaryons with equal or near-equal numb...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1986
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114035/
https://www.ncbi.nlm.nih.gov/pubmed/3941151
Descripción
Sumario:We report that gene dosage, or the ratio of nuclei from two cell types fused to form a heterokaryon, affects the time course of differentiation-specific gene expression. The rate of appearance of the human muscle antigen, 5.1H11, is significantly faster in heterokaryons with equal or near-equal numbers of mouse muscle and human fibroblast nuclei than in heterokaryons with increased numbers of nuclei from either cell type. By 4 d after fusion, a high frequency of gene expression is evident at all ratios and greater than 75% of heterokaryons express the antigen even when the nonmuscle nuclei greatly outnumber the muscle nuclei. The kinetic differences observed with different nuclear ratios suggest that the concentration of putative trans-acting factors significantly influences the rate of muscle gene expression: a threshold concentration is necessary, but an excess may be inhibitory.