Cargando…

Heat shock response of the rat lens

The sequence relationship between the small heat shock proteins and the eye lens protein alpha-crystallin (Ingolia, T. D., and E. E. Craig, 1982, Proc. Natl. Acad. Sci. USA, 79: 2360-2364) prompted us to subject rat lenses in organ culture to heat shock and other forms of stress. The effects on prot...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1986
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114049/
https://www.ncbi.nlm.nih.gov/pubmed/3941150
_version_ 1782140328560558080
collection PubMed
description The sequence relationship between the small heat shock proteins and the eye lens protein alpha-crystallin (Ingolia, T. D., and E. E. Craig, 1982, Proc. Natl. Acad. Sci. USA, 79: 2360-2364) prompted us to subject rat lenses in organ culture to heat shock and other forms of stress. The effects on protein synthesis were followed by labeling with [35S]methionine and analysis by one- and two-dimensional gel electrophoresis and fluorography. Heat shock gave a pronounced induction of a protein that could be characterized as the stress protein SP71. This protein probably corresponds to the major mammalian heat shock protein hsp70. Also two minor proteins of 16 and 85 kD were induced, while the synthesis of a constitutive heat shock-related protein, P73, was considerably increased. The synthesis of SP71 started between 30 and 60 min after heat shock, reached its highest level after 3 h, and had stopped again after 8 h. In rat lenses that were preconditioned by an initial mild heat shock, a subsequent shock did not cause renewed synthesis of SP71. This effect resembles the thermotolerance phenomenon observed in cultured cells. The proline analogue azetidine-2-carboxylic acid, zinc chloride, ethanol, and calcium chloride did not, under the conditions used, induce stress proteins in the rat lens. Sodium arsenite, however, had very much the same effects as heat shock. Calcium ionophore A23187 specifically and effectively induced the synthesis of the glucose-regulated protein GRP78. No special response to stress on crystallin synthesis was noticed.
format Text
id pubmed-2114049
institution National Center for Biotechnology Information
language English
publishDate 1986
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21140492008-05-01 Heat shock response of the rat lens J Cell Biol Articles The sequence relationship between the small heat shock proteins and the eye lens protein alpha-crystallin (Ingolia, T. D., and E. E. Craig, 1982, Proc. Natl. Acad. Sci. USA, 79: 2360-2364) prompted us to subject rat lenses in organ culture to heat shock and other forms of stress. The effects on protein synthesis were followed by labeling with [35S]methionine and analysis by one- and two-dimensional gel electrophoresis and fluorography. Heat shock gave a pronounced induction of a protein that could be characterized as the stress protein SP71. This protein probably corresponds to the major mammalian heat shock protein hsp70. Also two minor proteins of 16 and 85 kD were induced, while the synthesis of a constitutive heat shock-related protein, P73, was considerably increased. The synthesis of SP71 started between 30 and 60 min after heat shock, reached its highest level after 3 h, and had stopped again after 8 h. In rat lenses that were preconditioned by an initial mild heat shock, a subsequent shock did not cause renewed synthesis of SP71. This effect resembles the thermotolerance phenomenon observed in cultured cells. The proline analogue azetidine-2-carboxylic acid, zinc chloride, ethanol, and calcium chloride did not, under the conditions used, induce stress proteins in the rat lens. Sodium arsenite, however, had very much the same effects as heat shock. Calcium ionophore A23187 specifically and effectively induced the synthesis of the glucose-regulated protein GRP78. No special response to stress on crystallin synthesis was noticed. The Rockefeller University Press 1986-01-01 /pmc/articles/PMC2114049/ /pubmed/3941150 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Heat shock response of the rat lens
title Heat shock response of the rat lens
title_full Heat shock response of the rat lens
title_fullStr Heat shock response of the rat lens
title_full_unstemmed Heat shock response of the rat lens
title_short Heat shock response of the rat lens
title_sort heat shock response of the rat lens
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114049/
https://www.ncbi.nlm.nih.gov/pubmed/3941150