Cargando…
Direct observation of steady-state microtubule dynamics
Different types of unusual dynamic behavior have been reported for steady-state microtubules. While almost all earlier reports relied on kinetic measurements of bulk polymerization, we have directly visualized the steady-state addition of subunits to individual microtubules through the use of tubuli...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1986
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114110/ https://www.ncbi.nlm.nih.gov/pubmed/3005332 |
_version_ | 1782140342841114624 |
---|---|
collection | PubMed |
description | Different types of unusual dynamic behavior have been reported for steady-state microtubules. While almost all earlier reports relied on kinetic measurements of bulk polymerization, we have directly visualized the steady-state addition of subunits to individual microtubules through the use of tubulin derivitized with biotin. Biotinylated tubulin was used both as an internal "seed" for polymerization and as a marker for assembly onto the ends of microtubules composed of purified tubulin. Biotinylated segments were distinguished from unmodified tubulin by double-label immunofluorescence. Microtubule lengths, number concentrations, and segment lengths have been monitored with time at steady state under two buffer conditions. The results indicate that the microtubule steady state under these conditions is a balance between a majority of slowly growing microtubules and a minority of rapidly depolymerizing ones as described by the "dynamic instability" model (Mitchison T., and M. Kirschner, 1984, Nature (Lond.)., 312:232-242). Microtubules show no evidence of treadmilling; instead most show progressive growth off both ends at steady state. Although solvent conditions markedly influence the growth rates, qualitatively the behavior is unchanged. |
format | Text |
id | pubmed-2114110 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1986 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21141102008-05-01 Direct observation of steady-state microtubule dynamics J Cell Biol Articles Different types of unusual dynamic behavior have been reported for steady-state microtubules. While almost all earlier reports relied on kinetic measurements of bulk polymerization, we have directly visualized the steady-state addition of subunits to individual microtubules through the use of tubulin derivitized with biotin. Biotinylated tubulin was used both as an internal "seed" for polymerization and as a marker for assembly onto the ends of microtubules composed of purified tubulin. Biotinylated segments were distinguished from unmodified tubulin by double-label immunofluorescence. Microtubule lengths, number concentrations, and segment lengths have been monitored with time at steady state under two buffer conditions. The results indicate that the microtubule steady state under these conditions is a balance between a majority of slowly growing microtubules and a minority of rapidly depolymerizing ones as described by the "dynamic instability" model (Mitchison T., and M. Kirschner, 1984, Nature (Lond.)., 312:232-242). Microtubules show no evidence of treadmilling; instead most show progressive growth off both ends at steady state. Although solvent conditions markedly influence the growth rates, qualitatively the behavior is unchanged. The Rockefeller University Press 1986-03-01 /pmc/articles/PMC2114110/ /pubmed/3005332 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Direct observation of steady-state microtubule dynamics |
title | Direct observation of steady-state microtubule dynamics |
title_full | Direct observation of steady-state microtubule dynamics |
title_fullStr | Direct observation of steady-state microtubule dynamics |
title_full_unstemmed | Direct observation of steady-state microtubule dynamics |
title_short | Direct observation of steady-state microtubule dynamics |
title_sort | direct observation of steady-state microtubule dynamics |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114110/ https://www.ncbi.nlm.nih.gov/pubmed/3005332 |