Cargando…

Human IgA as a heterovalent ligand: switching from the asialoglycoprotein receptor to secretory component during transport across the rat hepatocyte

Asialoglycoproteins are taken up by the rat liver for degradation; rat polymeric IgA is taken up via a separate receptor, secretory component (SC), for quantitative delivery to bile. There is negligible uptake of these ligands by the converse receptor, and only a low level of missorting of ligands t...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1986
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114114/
https://www.ncbi.nlm.nih.gov/pubmed/3949883
_version_ 1782140343828873216
collection PubMed
description Asialoglycoproteins are taken up by the rat liver for degradation; rat polymeric IgA is taken up via a separate receptor, secretory component (SC), for quantitative delivery to bile. There is negligible uptake of these ligands by the converse receptor, and only a low level of missorting of ligands to opposite destinations. The two pathways are not cross-inhibitable and operate independently (Schiff, J.M., M. M. Fisher, and B. J. Underdown, 1984, J. Cell Biol., 98:79-89). We report here that when human IgA is presented as a ligand in the rat, it is processed using elements of both pathways. To study this in detail, different IgA fractions were prepared using two radiolabeling methods that provide separate probes for degradation or re-secretion. Behavior of intravenously injected human polymeric IgA in the rat depended on its binding properties. If deprived of SC binding activity by affinity adsorption or by reduction and alkylation, greater than 80% of human IgA was degraded in hepatic lysosomes; radioactive catabolites were released into bile by a leupeptin-inhibitable process. If prevented from binding to the asialoglycoprotein receptor by competition or by treatment with galactose oxidase, human IgA was cleared and transported to bile directly via SC, but its uptake was about fivefold slower than rat IgA. Untreated human IgA was taken up rapidly by the asialoglycoprotein receptor, but depended on SC binding to get to bile: the proportion secreted correlated 1:1 with SC binding activity determined in vitro, and the IgA was released into bile with SC still attached. These results demonstrate that human IgA is normally heterovalent: it is first captured from blood by the asialoglycoprotein receptor, but escapes the usual fate of asialoglycoproteins by switching to SC during transport. Since the biliary transit times of native human and rat IgA are the same, it is probable that the receptor switching event occurs en route. This implies that the two receptors briefly share a common intracellular compartment.
format Text
id pubmed-2114114
institution National Center for Biotechnology Information
language English
publishDate 1986
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21141142008-05-01 Human IgA as a heterovalent ligand: switching from the asialoglycoprotein receptor to secretory component during transport across the rat hepatocyte J Cell Biol Articles Asialoglycoproteins are taken up by the rat liver for degradation; rat polymeric IgA is taken up via a separate receptor, secretory component (SC), for quantitative delivery to bile. There is negligible uptake of these ligands by the converse receptor, and only a low level of missorting of ligands to opposite destinations. The two pathways are not cross-inhibitable and operate independently (Schiff, J.M., M. M. Fisher, and B. J. Underdown, 1984, J. Cell Biol., 98:79-89). We report here that when human IgA is presented as a ligand in the rat, it is processed using elements of both pathways. To study this in detail, different IgA fractions were prepared using two radiolabeling methods that provide separate probes for degradation or re-secretion. Behavior of intravenously injected human polymeric IgA in the rat depended on its binding properties. If deprived of SC binding activity by affinity adsorption or by reduction and alkylation, greater than 80% of human IgA was degraded in hepatic lysosomes; radioactive catabolites were released into bile by a leupeptin-inhibitable process. If prevented from binding to the asialoglycoprotein receptor by competition or by treatment with galactose oxidase, human IgA was cleared and transported to bile directly via SC, but its uptake was about fivefold slower than rat IgA. Untreated human IgA was taken up rapidly by the asialoglycoprotein receptor, but depended on SC binding to get to bile: the proportion secreted correlated 1:1 with SC binding activity determined in vitro, and the IgA was released into bile with SC still attached. These results demonstrate that human IgA is normally heterovalent: it is first captured from blood by the asialoglycoprotein receptor, but escapes the usual fate of asialoglycoproteins by switching to SC during transport. Since the biliary transit times of native human and rat IgA are the same, it is probable that the receptor switching event occurs en route. This implies that the two receptors briefly share a common intracellular compartment. The Rockefeller University Press 1986-03-01 /pmc/articles/PMC2114114/ /pubmed/3949883 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Human IgA as a heterovalent ligand: switching from the asialoglycoprotein receptor to secretory component during transport across the rat hepatocyte
title Human IgA as a heterovalent ligand: switching from the asialoglycoprotein receptor to secretory component during transport across the rat hepatocyte
title_full Human IgA as a heterovalent ligand: switching from the asialoglycoprotein receptor to secretory component during transport across the rat hepatocyte
title_fullStr Human IgA as a heterovalent ligand: switching from the asialoglycoprotein receptor to secretory component during transport across the rat hepatocyte
title_full_unstemmed Human IgA as a heterovalent ligand: switching from the asialoglycoprotein receptor to secretory component during transport across the rat hepatocyte
title_short Human IgA as a heterovalent ligand: switching from the asialoglycoprotein receptor to secretory component during transport across the rat hepatocyte
title_sort human iga as a heterovalent ligand: switching from the asialoglycoprotein receptor to secretory component during transport across the rat hepatocyte
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114114/
https://www.ncbi.nlm.nih.gov/pubmed/3949883