Cargando…

The effects of basic substances and acidic ionophores on the digestion of exogenous and endogenous proteins in mouse peritoneal macrophages

Basic substances and acidic ionophores that increase the lysosomal pH in cultured macrophages (Ohkuma, S., and B. Poole, 1978, Proc. Natl. Acad. Sci. USA., 75:3327-3331; Poole, B., and S. Ohkuma, 1981, J. Cell Biol., 90:665-669) inhibited the digestion of heat-denatured acetylated bovine serum album...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1986
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114118/
https://www.ncbi.nlm.nih.gov/pubmed/3949884
Descripción
Sumario:Basic substances and acidic ionophores that increase the lysosomal pH in cultured macrophages (Ohkuma, S., and B. Poole, 1978, Proc. Natl. Acad. Sci. USA., 75:3327-3331; Poole, B., and S. Ohkuma, 1981, J. Cell Biol., 90:665-669) inhibited the digestion of heat-denatured acetylated bovine serum albumin (BSA) taken up by the cells. For several substances, the shift in pH sufficed to explain the inhibition of proteolysis. Additional effects, presumably on enzyme activities, have to be postulated for tributylamine, amantadine, and chloroquine. Sodium fluoride (10 mM) had no significant effect on the breakdown of BSA by macrophages. The breakdown of endogenous macrophage proteins, whether short lived or long lived, was inhibited approximately 40% by 10 mM NaF and 30%, or sometimes less in the case of long-lived proteins, by 100 microM chloroquine. When the cells were supplied with BSA, a mixture of cell proteins, or even inert endocytosible materials, the breakdown of endogenous long-lived proteins and the inhibitory effect of chloroquine on this process were selectively reduced. Inhibition of endocytosis by cytochalasins B or D did not affect the chloroquine-sensitive breakdown of endogenous proteins, indicating that the proteins degraded by this process were truly endogenous and not taken in from the outside by cellular cannibalism. On the other hand, when macrophage proteins were supplied extracellularly, their breakdown occurred at the same rate for short-lived and long-lived proteins, and it was strongly inhibited by chloroquine and not by NaF. It is concluded from these results that the breakdown of endogenous proteins, both short-lived and long-lived, probably takes place partly (approximately 30%) in lysosomes and partly through one or more nonlysosomal mechanism(s) unaffected by chloroquine and presumably susceptible to inhibition by fluoride. A difference must exist between short-lived and long-lived proteins in the manner in which they reach lysosomes or are handled by these organelles; this difference would account for the selective effect of the supply of endocytosible materials on the lysosomal processing of long-lived proteins.