Cargando…

Fibroblasts promote the formation of a continuous basal lamina during myogenesis in vitro

Analyses were made of the requirements for the formation of a continuous basal lamina during myogenesis of quail muscle in vitro. A culture system was developed in which mass cultures of differentiating muscle cells were embedded in a native gel of rat tail collagen. Fibroblastic cells, which were a...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1986
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114123/
https://www.ncbi.nlm.nih.gov/pubmed/3949876
_version_ 1782140345908199424
collection PubMed
description Analyses were made of the requirements for the formation of a continuous basal lamina during myogenesis of quail muscle in vitro. A culture system was developed in which mass cultures of differentiating muscle cells were embedded in a native gel of rat tail collagen. Fibroblastic cells, which were also present in the cultures, migrated into the gel and within a few days surrounded the newly formed myotubes. In this environment, a continuous basal lamina was formed at the surface of the myotubes as demonstrated by immunofluorescent staining with monoclonal antibodies against type IV collagen, laminin, and heparan sulfate, as well as by electron microscopic immunolocalization. To distinguish between the role of the fibroblasts and the collagen gel in promoting basal lamina formation, clones of quail muscle cells lacking fibroblasts were subsequently embedded in a native rat tail collagen gel. Under these conditions, only very limited fluorescent staining for basement membrane components was observed associated with the myotubes. However, the introduction of chick muscle or skin fibroblasts into the clonal cultures just before gel formation resulted in the formation of an extensive basal lamina on the surface of the myotubes. Conditioned medium from fibroblast cultures by itself was not effective in promoting basal lamina formation. These results clearly show that during myogenesis in vitro fibroblasts must be in close proximity to the myotubes for a continuous basal lamina to form. These results probably relate closely to the interactions that must occur during myogenesis in vivo between the muscle cells and the surrounding connective tissue including the developing tendons.
format Text
id pubmed-2114123
institution National Center for Biotechnology Information
language English
publishDate 1986
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21141232008-05-01 Fibroblasts promote the formation of a continuous basal lamina during myogenesis in vitro J Cell Biol Articles Analyses were made of the requirements for the formation of a continuous basal lamina during myogenesis of quail muscle in vitro. A culture system was developed in which mass cultures of differentiating muscle cells were embedded in a native gel of rat tail collagen. Fibroblastic cells, which were also present in the cultures, migrated into the gel and within a few days surrounded the newly formed myotubes. In this environment, a continuous basal lamina was formed at the surface of the myotubes as demonstrated by immunofluorescent staining with monoclonal antibodies against type IV collagen, laminin, and heparan sulfate, as well as by electron microscopic immunolocalization. To distinguish between the role of the fibroblasts and the collagen gel in promoting basal lamina formation, clones of quail muscle cells lacking fibroblasts were subsequently embedded in a native rat tail collagen gel. Under these conditions, only very limited fluorescent staining for basement membrane components was observed associated with the myotubes. However, the introduction of chick muscle or skin fibroblasts into the clonal cultures just before gel formation resulted in the formation of an extensive basal lamina on the surface of the myotubes. Conditioned medium from fibroblast cultures by itself was not effective in promoting basal lamina formation. These results clearly show that during myogenesis in vitro fibroblasts must be in close proximity to the myotubes for a continuous basal lamina to form. These results probably relate closely to the interactions that must occur during myogenesis in vivo between the muscle cells and the surrounding connective tissue including the developing tendons. The Rockefeller University Press 1986-03-01 /pmc/articles/PMC2114123/ /pubmed/3949876 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Fibroblasts promote the formation of a continuous basal lamina during myogenesis in vitro
title Fibroblasts promote the formation of a continuous basal lamina during myogenesis in vitro
title_full Fibroblasts promote the formation of a continuous basal lamina during myogenesis in vitro
title_fullStr Fibroblasts promote the formation of a continuous basal lamina during myogenesis in vitro
title_full_unstemmed Fibroblasts promote the formation of a continuous basal lamina during myogenesis in vitro
title_short Fibroblasts promote the formation of a continuous basal lamina during myogenesis in vitro
title_sort fibroblasts promote the formation of a continuous basal lamina during myogenesis in vitro
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114123/
https://www.ncbi.nlm.nih.gov/pubmed/3949876