Cargando…

Analysis of the treadmilling model during metaphase of mitosis using fluorescence redistribution after photobleaching

One recent hypothesis for the mechanism of chromosome movement during mitosis predicts that a continual, uniform, poleward flow or "treadmilling" of microtubules occurs within the half-spindle between the chromosomes and the poles during mitosis (Margolis, R. L., and L. Wilson, 1981, Natur...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1986
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114127/
https://www.ncbi.nlm.nih.gov/pubmed/3949871
_version_ 1782140346840383488
collection PubMed
description One recent hypothesis for the mechanism of chromosome movement during mitosis predicts that a continual, uniform, poleward flow or "treadmilling" of microtubules occurs within the half-spindle between the chromosomes and the poles during mitosis (Margolis, R. L., and L. Wilson, 1981, Nature (Lond.), 293:705-711). We have tested this treadmilling hypothesis using fluorescent analog cytochemistry and measurements of fluorescence redistribution after photobleaching to examine microtubule behavior during metaphase of mitosis. Mitotic BSC 1 mammalian tissue culture cells or newt lung epithelial cells were microinjected with brain tubulin labeled with 5-(4,6-dichlorotriazin-2- yl) amino fluorescein (DTAF) to provide a fluorescent tracer of the endogenous tubulin pool. Using a laser microbeam, fluorescence in the half-spindle was photobleached in either a narrow 1.6 micron wide bar pattern across the half-spingle or in a circular area of 2.8 or 4.5 micron diameter. Fluorescence recovery in the spindle fibers, measured using video microscopy or photometric techniques, occurs as bleached DTAF-tubulin subunits within the microtubules are exchanged for unbleached DTAF-tubulin in the cytosol by steady-state microtubule assembly-disassembly pathways. Recovery of 75% of the bleached fluorescence follows first-order kinetics and has an average half-time of 37 sec, at 31-33 degrees C. No translocation of the bleached bar region could be detected during fluorescence recovery, and the rate of recovery was independent of the size of the bleached spot. These results reveal that, for 75% of the half-spindle microtubules, FRAP does not occur by a synchronous treadmilling mechanism.
format Text
id pubmed-2114127
institution National Center for Biotechnology Information
language English
publishDate 1986
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21141272008-05-01 Analysis of the treadmilling model during metaphase of mitosis using fluorescence redistribution after photobleaching J Cell Biol Articles One recent hypothesis for the mechanism of chromosome movement during mitosis predicts that a continual, uniform, poleward flow or "treadmilling" of microtubules occurs within the half-spindle between the chromosomes and the poles during mitosis (Margolis, R. L., and L. Wilson, 1981, Nature (Lond.), 293:705-711). We have tested this treadmilling hypothesis using fluorescent analog cytochemistry and measurements of fluorescence redistribution after photobleaching to examine microtubule behavior during metaphase of mitosis. Mitotic BSC 1 mammalian tissue culture cells or newt lung epithelial cells were microinjected with brain tubulin labeled with 5-(4,6-dichlorotriazin-2- yl) amino fluorescein (DTAF) to provide a fluorescent tracer of the endogenous tubulin pool. Using a laser microbeam, fluorescence in the half-spindle was photobleached in either a narrow 1.6 micron wide bar pattern across the half-spingle or in a circular area of 2.8 or 4.5 micron diameter. Fluorescence recovery in the spindle fibers, measured using video microscopy or photometric techniques, occurs as bleached DTAF-tubulin subunits within the microtubules are exchanged for unbleached DTAF-tubulin in the cytosol by steady-state microtubule assembly-disassembly pathways. Recovery of 75% of the bleached fluorescence follows first-order kinetics and has an average half-time of 37 sec, at 31-33 degrees C. No translocation of the bleached bar region could be detected during fluorescence recovery, and the rate of recovery was independent of the size of the bleached spot. These results reveal that, for 75% of the half-spindle microtubules, FRAP does not occur by a synchronous treadmilling mechanism. The Rockefeller University Press 1986-03-01 /pmc/articles/PMC2114127/ /pubmed/3949871 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Analysis of the treadmilling model during metaphase of mitosis using fluorescence redistribution after photobleaching
title Analysis of the treadmilling model during metaphase of mitosis using fluorescence redistribution after photobleaching
title_full Analysis of the treadmilling model during metaphase of mitosis using fluorescence redistribution after photobleaching
title_fullStr Analysis of the treadmilling model during metaphase of mitosis using fluorescence redistribution after photobleaching
title_full_unstemmed Analysis of the treadmilling model during metaphase of mitosis using fluorescence redistribution after photobleaching
title_short Analysis of the treadmilling model during metaphase of mitosis using fluorescence redistribution after photobleaching
title_sort analysis of the treadmilling model during metaphase of mitosis using fluorescence redistribution after photobleaching
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114127/
https://www.ncbi.nlm.nih.gov/pubmed/3949871