Cargando…

Molecular forms of N-CAM and its RNA in developing and denervated skeletal muscle

The neural cell adhesion molecule (N-CAM) is present in both embryonic and perinatal muscle, but its distribution changes as myoblasts form myotubes and axons establish synapses (Covault, J., and J. R. Sanes, 1986, J. Cell Biol., 102:716-730). Levels of N-CAM decline postnatally but increase when ad...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1986
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114130/
https://www.ncbi.nlm.nih.gov/pubmed/3949875
_version_ 1782140347530346496
collection PubMed
description The neural cell adhesion molecule (N-CAM) is present in both embryonic and perinatal muscle, but its distribution changes as myoblasts form myotubes and axons establish synapses (Covault, J., and J. R. Sanes, 1986, J. Cell Biol., 102:716-730). Levels of N-CAM decline postnatally but increase when adult muscle is denervated or paralyzed (Covault, J., and J. R. Sanes, 1985, Proc. Natl. Acad. Sci. USA., 82:4544-4548). To determine the molecular forms of N-CAM and N-CAM-related RNA during these different periods we used immunoblotting and nucleic acid hybridization techniques to analyze N-CAM and its RNA in developing, cultured, adult, and denervated adult muscle. As muscles develop, the extent of sialylation of muscle N-CAM decreases, and a 140-kD desialo form of N-CAM (generated by neuraminidase treatment) is replaced by a 125-kD form. This change in the apparent molecular weight of desialo N- CAM is paralleled by a change in N-CAM RNA: early embryonic muscles express a 6.7-kb RNA species which hybridizes with N-CAM cDNA, whereas in neonatal muscle this form is largely replaced by 5.2- and 2.9-kb species. Similar transitions in the desialo form of N-CAM, but not in extent of sialylation, accompany differentiation in primary cultures of embryonic muscle and in cultures of the clonal muscle cell lines C2 and BC3H-1. Both in vivo and in vitro, a 140-kD desialo form of N-CAM and a 6.7-kb N-CAM RNA are apparently associated with myoblasts, whereas a 125-kD desialo form and 5.2- and 2.9-kb RNAs are associated with myotubes and myofibers. After denervation of adult muscle, a approximately 12-15-fold increase in the levels of N-CAM is accompanied by a approximately 30-50-fold increase in N-CAM RNA, suggesting that N- CAM expression is regulated at a pretranslational level. Forms of N-CAM and its RNA in denervated muscle are similar to those seen in perinatal myofibers.
format Text
id pubmed-2114130
institution National Center for Biotechnology Information
language English
publishDate 1986
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21141302008-05-01 Molecular forms of N-CAM and its RNA in developing and denervated skeletal muscle J Cell Biol Articles The neural cell adhesion molecule (N-CAM) is present in both embryonic and perinatal muscle, but its distribution changes as myoblasts form myotubes and axons establish synapses (Covault, J., and J. R. Sanes, 1986, J. Cell Biol., 102:716-730). Levels of N-CAM decline postnatally but increase when adult muscle is denervated or paralyzed (Covault, J., and J. R. Sanes, 1985, Proc. Natl. Acad. Sci. USA., 82:4544-4548). To determine the molecular forms of N-CAM and N-CAM-related RNA during these different periods we used immunoblotting and nucleic acid hybridization techniques to analyze N-CAM and its RNA in developing, cultured, adult, and denervated adult muscle. As muscles develop, the extent of sialylation of muscle N-CAM decreases, and a 140-kD desialo form of N-CAM (generated by neuraminidase treatment) is replaced by a 125-kD form. This change in the apparent molecular weight of desialo N- CAM is paralleled by a change in N-CAM RNA: early embryonic muscles express a 6.7-kb RNA species which hybridizes with N-CAM cDNA, whereas in neonatal muscle this form is largely replaced by 5.2- and 2.9-kb species. Similar transitions in the desialo form of N-CAM, but not in extent of sialylation, accompany differentiation in primary cultures of embryonic muscle and in cultures of the clonal muscle cell lines C2 and BC3H-1. Both in vivo and in vitro, a 140-kD desialo form of N-CAM and a 6.7-kb N-CAM RNA are apparently associated with myoblasts, whereas a 125-kD desialo form and 5.2- and 2.9-kb RNAs are associated with myotubes and myofibers. After denervation of adult muscle, a approximately 12-15-fold increase in the levels of N-CAM is accompanied by a approximately 30-50-fold increase in N-CAM RNA, suggesting that N- CAM expression is regulated at a pretranslational level. Forms of N-CAM and its RNA in denervated muscle are similar to those seen in perinatal myofibers. The Rockefeller University Press 1986-03-01 /pmc/articles/PMC2114130/ /pubmed/3949875 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Molecular forms of N-CAM and its RNA in developing and denervated skeletal muscle
title Molecular forms of N-CAM and its RNA in developing and denervated skeletal muscle
title_full Molecular forms of N-CAM and its RNA in developing and denervated skeletal muscle
title_fullStr Molecular forms of N-CAM and its RNA in developing and denervated skeletal muscle
title_full_unstemmed Molecular forms of N-CAM and its RNA in developing and denervated skeletal muscle
title_short Molecular forms of N-CAM and its RNA in developing and denervated skeletal muscle
title_sort molecular forms of n-cam and its rna in developing and denervated skeletal muscle
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114130/
https://www.ncbi.nlm.nih.gov/pubmed/3949875