Cargando…

On the surface lattice of microtubules: helix starts, protofilament number, seam, and handedness

The tubulin monomers of brain microtubules reassembled in vitro are arranged on a 3-start helix, irrespective of whether the number of protofilaments is 13 or 14. The dimer packing is that of the B-lattice described for flagellar microtubules. This implies that the tubulin core of microtubules conta...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1986
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114131/
https://www.ncbi.nlm.nih.gov/pubmed/3949873
Descripción
Sumario:The tubulin monomers of brain microtubules reassembled in vitro are arranged on a 3-start helix, irrespective of whether the number of protofilaments is 13 or 14. The dimer packing is that of the B-lattice described for flagellar microtubules. This implies that the tubulin core of microtubules contains at least one helical discontinuity. Neither 5-start nor 8-start helices have a physical significance and thus cannot be implicated in models of microtubule elongation, but the structure is compatible with elongation of protofilaments by dimers or protofilamentous oligomers. The inner and outer surfaces of the microtubule wall can be visualized by propane jet freezing, freeze fracturing, and metal replication, at a resolution of at least 4 nm. The 3-start helix is left-handed, in contrast to a previous study based on negative staining and shadowing. The reasons for this discrepancy are discussed.