Cargando…

Molecular specialization of astrocyte processes at nodes of Ranvier in rat optic nerve

The HNK-1 and L2 monoclonal antibodies are thought to recognize identical or closely associated carbohydrate epitopes on a family of neural plasma membrane glycoproteins, including myelin-associated glycoprotein, the neural cell adhesion molecule, and the L1 and J1 glycoproteins, all of which have b...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1986
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114143/
https://www.ncbi.nlm.nih.gov/pubmed/2419343
_version_ 1782140350490476544
collection PubMed
description The HNK-1 and L2 monoclonal antibodies are thought to recognize identical or closely associated carbohydrate epitopes on a family of neural plasma membrane glycoproteins, including myelin-associated glycoprotein, the neural cell adhesion molecule, and the L1 and J1 glycoproteins, all of which have been postulated to play a part in mediating cell-cell interactions in the nervous system. We have used these two antibodies in immunofluorescence and immunogold-electron microscopic studies of semithin and ultrathin frozen sections of adult rat optic nerve, respectively, and we show that they bind mainly to astrocyte processes around nodes of Ranvier. Most other elements of the nerve, including astrocyte cell bodies and large astrocytic processes, are not labeled by the antibodies. To our knowledge, this is the first demonstration that perinodal astrocyte processes are biochemically specialized. We provide evidence that one of the HNK-1+/L2+ molecules concentrated around perinodal astrocyte processes is the J1 glycoprotein; our findings, taken together with previously reported observations, suggest that the other known HNK-1+/L2+ molecules are not concentrated on these processes. Since anti-J1 antibodies previously have been shown to inhibit neuron to astrocyte adhesion in vitro, we hypothesize that J1 may play an important part in the axon-glial interactions that presumably are involved in the assembly and/or maintenance of nodes of Ranvier.
format Text
id pubmed-2114143
institution National Center for Biotechnology Information
language English
publishDate 1986
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21141432008-05-01 Molecular specialization of astrocyte processes at nodes of Ranvier in rat optic nerve J Cell Biol Articles The HNK-1 and L2 monoclonal antibodies are thought to recognize identical or closely associated carbohydrate epitopes on a family of neural plasma membrane glycoproteins, including myelin-associated glycoprotein, the neural cell adhesion molecule, and the L1 and J1 glycoproteins, all of which have been postulated to play a part in mediating cell-cell interactions in the nervous system. We have used these two antibodies in immunofluorescence and immunogold-electron microscopic studies of semithin and ultrathin frozen sections of adult rat optic nerve, respectively, and we show that they bind mainly to astrocyte processes around nodes of Ranvier. Most other elements of the nerve, including astrocyte cell bodies and large astrocytic processes, are not labeled by the antibodies. To our knowledge, this is the first demonstration that perinodal astrocyte processes are biochemically specialized. We provide evidence that one of the HNK-1+/L2+ molecules concentrated around perinodal astrocyte processes is the J1 glycoprotein; our findings, taken together with previously reported observations, suggest that the other known HNK-1+/L2+ molecules are not concentrated on these processes. Since anti-J1 antibodies previously have been shown to inhibit neuron to astrocyte adhesion in vitro, we hypothesize that J1 may play an important part in the axon-glial interactions that presumably are involved in the assembly and/or maintenance of nodes of Ranvier. The Rockefeller University Press 1986-03-01 /pmc/articles/PMC2114143/ /pubmed/2419343 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Molecular specialization of astrocyte processes at nodes of Ranvier in rat optic nerve
title Molecular specialization of astrocyte processes at nodes of Ranvier in rat optic nerve
title_full Molecular specialization of astrocyte processes at nodes of Ranvier in rat optic nerve
title_fullStr Molecular specialization of astrocyte processes at nodes of Ranvier in rat optic nerve
title_full_unstemmed Molecular specialization of astrocyte processes at nodes of Ranvier in rat optic nerve
title_short Molecular specialization of astrocyte processes at nodes of Ranvier in rat optic nerve
title_sort molecular specialization of astrocyte processes at nodes of ranvier in rat optic nerve
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114143/
https://www.ncbi.nlm.nih.gov/pubmed/2419343