Cargando…
Identification and further characterization of the specific cell binding fragment from sponge aggregation factor
Monoclonal antibodies (McAbs) were raised against the aggregation factor (AF) from the marine sponge Geodia cydonium. Two clones were identified that secrete McAbs against the cell binding protein of the AF complex. Fab fragments of McAbs: 5D2-D11 completely abolished the activity of the AF to form...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1986
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114149/ https://www.ncbi.nlm.nih.gov/pubmed/3958049 |
_version_ | 1782140351879839744 |
---|---|
collection | PubMed |
description | Monoclonal antibodies (McAbs) were raised against the aggregation factor (AF) from the marine sponge Geodia cydonium. Two clones were identified that secrete McAbs against the cell binding protein of the AF complex. Fab fragments of McAbs: 5D2-D11 completely abolished the activity of the AF to form secondary aggregates from single cells. The McAbs were determined to react with the AF in vitro; this interaction was prevented by addition of the aggregation receptor, isolated and purified from the same species. After dissociation of the AF by sodium dodecyl sulfate and 2-mercaptoethanol, followed by electrophoretical fractionation, a 47-kD protein was identified by immunoblotting which interacted with the McAbs: 5D2-D11. During this dissociation procedure, the sunburst structure of the AF was destroyed. In a second approach, the 47-kD protein was isolated by immunoprecipitation; 12 molecules of this protein species were calculated to be associated with the intact AF particle. The 47-kD AF fragment bound to dissociated Geodia cells with a high affinity (Ka of 7 X 10(8) M-1) even in the absence of Ca++ ions; the number of binding sites was approximately 4 X 10(6)/cell. This interaction was prevented by addition of the aggregation receptor to the 47-kD protein in the homologous cell system. Moreover, it was established that this binding occurs species-specifically. The 47-kD fragment of the AF was localized only extracellularly by indirect immunofluorescence staining in cryostat slices. These data suggest that the 47-kD protein is the cell binding molecule of the AF from Geodia. |
format | Text |
id | pubmed-2114149 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1986 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21141492008-05-01 Identification and further characterization of the specific cell binding fragment from sponge aggregation factor J Cell Biol Articles Monoclonal antibodies (McAbs) were raised against the aggregation factor (AF) from the marine sponge Geodia cydonium. Two clones were identified that secrete McAbs against the cell binding protein of the AF complex. Fab fragments of McAbs: 5D2-D11 completely abolished the activity of the AF to form secondary aggregates from single cells. The McAbs were determined to react with the AF in vitro; this interaction was prevented by addition of the aggregation receptor, isolated and purified from the same species. After dissociation of the AF by sodium dodecyl sulfate and 2-mercaptoethanol, followed by electrophoretical fractionation, a 47-kD protein was identified by immunoblotting which interacted with the McAbs: 5D2-D11. During this dissociation procedure, the sunburst structure of the AF was destroyed. In a second approach, the 47-kD protein was isolated by immunoprecipitation; 12 molecules of this protein species were calculated to be associated with the intact AF particle. The 47-kD AF fragment bound to dissociated Geodia cells with a high affinity (Ka of 7 X 10(8) M-1) even in the absence of Ca++ ions; the number of binding sites was approximately 4 X 10(6)/cell. This interaction was prevented by addition of the aggregation receptor to the 47-kD protein in the homologous cell system. Moreover, it was established that this binding occurs species-specifically. The 47-kD fragment of the AF was localized only extracellularly by indirect immunofluorescence staining in cryostat slices. These data suggest that the 47-kD protein is the cell binding molecule of the AF from Geodia. The Rockefeller University Press 1986-04-01 /pmc/articles/PMC2114149/ /pubmed/3958049 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Identification and further characterization of the specific cell binding fragment from sponge aggregation factor |
title | Identification and further characterization of the specific cell binding fragment from sponge aggregation factor |
title_full | Identification and further characterization of the specific cell binding fragment from sponge aggregation factor |
title_fullStr | Identification and further characterization of the specific cell binding fragment from sponge aggregation factor |
title_full_unstemmed | Identification and further characterization of the specific cell binding fragment from sponge aggregation factor |
title_short | Identification and further characterization of the specific cell binding fragment from sponge aggregation factor |
title_sort | identification and further characterization of the specific cell binding fragment from sponge aggregation factor |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114149/ https://www.ncbi.nlm.nih.gov/pubmed/3958049 |