Cargando…

Identification and further characterization of the specific cell binding fragment from sponge aggregation factor

Monoclonal antibodies (McAbs) were raised against the aggregation factor (AF) from the marine sponge Geodia cydonium. Two clones were identified that secrete McAbs against the cell binding protein of the AF complex. Fab fragments of McAbs: 5D2-D11 completely abolished the activity of the AF to form...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1986
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114149/
https://www.ncbi.nlm.nih.gov/pubmed/3958049
_version_ 1782140351879839744
collection PubMed
description Monoclonal antibodies (McAbs) were raised against the aggregation factor (AF) from the marine sponge Geodia cydonium. Two clones were identified that secrete McAbs against the cell binding protein of the AF complex. Fab fragments of McAbs: 5D2-D11 completely abolished the activity of the AF to form secondary aggregates from single cells. The McAbs were determined to react with the AF in vitro; this interaction was prevented by addition of the aggregation receptor, isolated and purified from the same species. After dissociation of the AF by sodium dodecyl sulfate and 2-mercaptoethanol, followed by electrophoretical fractionation, a 47-kD protein was identified by immunoblotting which interacted with the McAbs: 5D2-D11. During this dissociation procedure, the sunburst structure of the AF was destroyed. In a second approach, the 47-kD protein was isolated by immunoprecipitation; 12 molecules of this protein species were calculated to be associated with the intact AF particle. The 47-kD AF fragment bound to dissociated Geodia cells with a high affinity (Ka of 7 X 10(8) M-1) even in the absence of Ca++ ions; the number of binding sites was approximately 4 X 10(6)/cell. This interaction was prevented by addition of the aggregation receptor to the 47-kD protein in the homologous cell system. Moreover, it was established that this binding occurs species-specifically. The 47-kD fragment of the AF was localized only extracellularly by indirect immunofluorescence staining in cryostat slices. These data suggest that the 47-kD protein is the cell binding molecule of the AF from Geodia.
format Text
id pubmed-2114149
institution National Center for Biotechnology Information
language English
publishDate 1986
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21141492008-05-01 Identification and further characterization of the specific cell binding fragment from sponge aggregation factor J Cell Biol Articles Monoclonal antibodies (McAbs) were raised against the aggregation factor (AF) from the marine sponge Geodia cydonium. Two clones were identified that secrete McAbs against the cell binding protein of the AF complex. Fab fragments of McAbs: 5D2-D11 completely abolished the activity of the AF to form secondary aggregates from single cells. The McAbs were determined to react with the AF in vitro; this interaction was prevented by addition of the aggregation receptor, isolated and purified from the same species. After dissociation of the AF by sodium dodecyl sulfate and 2-mercaptoethanol, followed by electrophoretical fractionation, a 47-kD protein was identified by immunoblotting which interacted with the McAbs: 5D2-D11. During this dissociation procedure, the sunburst structure of the AF was destroyed. In a second approach, the 47-kD protein was isolated by immunoprecipitation; 12 molecules of this protein species were calculated to be associated with the intact AF particle. The 47-kD AF fragment bound to dissociated Geodia cells with a high affinity (Ka of 7 X 10(8) M-1) even in the absence of Ca++ ions; the number of binding sites was approximately 4 X 10(6)/cell. This interaction was prevented by addition of the aggregation receptor to the 47-kD protein in the homologous cell system. Moreover, it was established that this binding occurs species-specifically. The 47-kD fragment of the AF was localized only extracellularly by indirect immunofluorescence staining in cryostat slices. These data suggest that the 47-kD protein is the cell binding molecule of the AF from Geodia. The Rockefeller University Press 1986-04-01 /pmc/articles/PMC2114149/ /pubmed/3958049 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Identification and further characterization of the specific cell binding fragment from sponge aggregation factor
title Identification and further characterization of the specific cell binding fragment from sponge aggregation factor
title_full Identification and further characterization of the specific cell binding fragment from sponge aggregation factor
title_fullStr Identification and further characterization of the specific cell binding fragment from sponge aggregation factor
title_full_unstemmed Identification and further characterization of the specific cell binding fragment from sponge aggregation factor
title_short Identification and further characterization of the specific cell binding fragment from sponge aggregation factor
title_sort identification and further characterization of the specific cell binding fragment from sponge aggregation factor
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114149/
https://www.ncbi.nlm.nih.gov/pubmed/3958049