Cargando…

Cell-mediated co-action of transforming growth factors: incubation of type beta with normal rat kidney cells produces a soluble activity that prolongs the ruffling response to type alpha

Intense, continuous ruffling is a characteristic of many transformed cells, but untransformed cells ruffle intensely only briefly after exposure to growth factors. We reported previously that cells of a normal rat kidney (NRK) cell line transformed by Kirsten murine sarcoma virus secrete their own r...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1986
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114180/
https://www.ncbi.nlm.nih.gov/pubmed/3007529
Descripción
Sumario:Intense, continuous ruffling is a characteristic of many transformed cells, but untransformed cells ruffle intensely only briefly after exposure to growth factors. We reported previously that cells of a normal rat kidney (NRK) cell line transformed by Kirsten murine sarcoma virus secrete their own ruffle-inducing agent(s) that cause sustained ruffling in either themselves or untransformed NRK cells. In the present study, we examined the roles of the transforming growth factors TGF-alpha and TGF-beta in the induction and maintenance of ruffling in untransformed NRK cells and observed the following: TGF-alpha caused a transient epidermal growth factor (EGF)-like response, which could be blocked by prior exposure of cells to EGF or by antiserum directed against the COOH-terminus of TGF-alpha. TGF-beta caused no ruffling and did not itself prolong TGF-alpha ruffling. A new, buffer-soluble (transferable) mediator activity produced by incubation of TGF-beta with NRK cells for 6-h extended the duration of maximal TGF-alpha- induced ruffling by several-fold. This study demonstrates that TGF- alpha alone causes an EGF-like, transient ruffling response, but neither TGF-alpha or TGF-beta alone, nor the two together, cause transformation-associated sustained ruffling. Rather, TGF-alpha acts in concert with a new, TGF-beta-dependent activity. This new activity appears to inhibit normal cellular off-regulation of TGF-alpha-induced ruffling. Inhibition of the cellular off-regulation of a growth factor response could play a key role in the unregulated growth associated with malignancy.