Cargando…

Bacterial lipopolysaccharide suppresses the production of catalytically active lysosomal acid hydrolases in human macrophages

Sub-microgram quantities of bacterial lipopolysaccharide (LPS) have been found to substantially reduce the intracellular catalytic activities of three representative lysosomal enzymes (namely, acid phosphatase, hexosaminidase, and beta-glucuronidase) in human monocyte- derived macrophages. This resp...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1986
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114209/
https://www.ncbi.nlm.nih.gov/pubmed/3700468
_version_ 1782140365959069696
collection PubMed
description Sub-microgram quantities of bacterial lipopolysaccharide (LPS) have been found to substantially reduce the intracellular catalytic activities of three representative lysosomal enzymes (namely, acid phosphatase, hexosaminidase, and beta-glucuronidase) in human monocyte- derived macrophages. This response was not associated with a concurrent increase in enzyme catalytic activity in the culture supernatant, and hence, could not be explained by mobilization of preformed material. By conducting experiments in the presence and absence of indomethacin, a cyclooxygenase inhibitor, the reduction in lysosomal enzyme catalytic activities was shown not to be dependent on the ability of LPS to induce prostaglandin E2 production. The response was not found to be the result of a more generalized LPS-dependent reduction in the ability of the cells to synthesize protein, since the presence of LPS in macrophage cultures did not appreciably affect the amount of [35S]methionine incorporated into total cellular proteins. A kinetic analysis of the effect of LPS on the down-regulation of enzyme catalytic activities indicated that this was an early response of the cells to LPS exposure. An investigation of the effects of blockade of enzyme catabolism (using the lysosomotropic weak-base, methylamine) indicated that the reduction of catalytic enzyme activities in response to LPS was probably due to a decreased rate of production of active product, rather than an enhanced rate of enzyme catabolism. This suggestion was confirmed by experiments in which the synthesis of pro- hexosaminidase (measured by biosynthetic labeling with [35S]methionine and specific immunoprecipitation of labeled pro-hexosaminidase) was found to be reduced by 42% after a 24-h exposure to LPS (although the synthesis of complement component C3 was stimulated by a factor of 4.5). It is suggested that the ability of LPS to regulate the functional expression of protein products contributes to changes in the overall functional status of these cells in response to this bacterial product.
format Text
id pubmed-2114209
institution National Center for Biotechnology Information
language English
publishDate 1986
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21142092008-05-01 Bacterial lipopolysaccharide suppresses the production of catalytically active lysosomal acid hydrolases in human macrophages J Cell Biol Articles Sub-microgram quantities of bacterial lipopolysaccharide (LPS) have been found to substantially reduce the intracellular catalytic activities of three representative lysosomal enzymes (namely, acid phosphatase, hexosaminidase, and beta-glucuronidase) in human monocyte- derived macrophages. This response was not associated with a concurrent increase in enzyme catalytic activity in the culture supernatant, and hence, could not be explained by mobilization of preformed material. By conducting experiments in the presence and absence of indomethacin, a cyclooxygenase inhibitor, the reduction in lysosomal enzyme catalytic activities was shown not to be dependent on the ability of LPS to induce prostaglandin E2 production. The response was not found to be the result of a more generalized LPS-dependent reduction in the ability of the cells to synthesize protein, since the presence of LPS in macrophage cultures did not appreciably affect the amount of [35S]methionine incorporated into total cellular proteins. A kinetic analysis of the effect of LPS on the down-regulation of enzyme catalytic activities indicated that this was an early response of the cells to LPS exposure. An investigation of the effects of blockade of enzyme catabolism (using the lysosomotropic weak-base, methylamine) indicated that the reduction of catalytic enzyme activities in response to LPS was probably due to a decreased rate of production of active product, rather than an enhanced rate of enzyme catabolism. This suggestion was confirmed by experiments in which the synthesis of pro- hexosaminidase (measured by biosynthetic labeling with [35S]methionine and specific immunoprecipitation of labeled pro-hexosaminidase) was found to be reduced by 42% after a 24-h exposure to LPS (although the synthesis of complement component C3 was stimulated by a factor of 4.5). It is suggested that the ability of LPS to regulate the functional expression of protein products contributes to changes in the overall functional status of these cells in response to this bacterial product. The Rockefeller University Press 1986-05-01 /pmc/articles/PMC2114209/ /pubmed/3700468 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Bacterial lipopolysaccharide suppresses the production of catalytically active lysosomal acid hydrolases in human macrophages
title Bacterial lipopolysaccharide suppresses the production of catalytically active lysosomal acid hydrolases in human macrophages
title_full Bacterial lipopolysaccharide suppresses the production of catalytically active lysosomal acid hydrolases in human macrophages
title_fullStr Bacterial lipopolysaccharide suppresses the production of catalytically active lysosomal acid hydrolases in human macrophages
title_full_unstemmed Bacterial lipopolysaccharide suppresses the production of catalytically active lysosomal acid hydrolases in human macrophages
title_short Bacterial lipopolysaccharide suppresses the production of catalytically active lysosomal acid hydrolases in human macrophages
title_sort bacterial lipopolysaccharide suppresses the production of catalytically active lysosomal acid hydrolases in human macrophages
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114209/
https://www.ncbi.nlm.nih.gov/pubmed/3700468