Cargando…
Binding and assembly of actin filaments by plasma membranes from Dictyostelium discoideum
The binding of native, 125I-Bolton-Hunter-labeled actin to purified Dictyostelium discoideum plasma membranes was measured using a sedimentation assay. Binding was saturable only in the presence of the actin capping protein, gelsolin. In the presence of gelsolin, the amount of actin bound at saturat...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1986
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114255/ https://www.ncbi.nlm.nih.gov/pubmed/2423531 |
_version_ | 1782140376874745856 |
---|---|
collection | PubMed |
description | The binding of native, 125I-Bolton-Hunter-labeled actin to purified Dictyostelium discoideum plasma membranes was measured using a sedimentation assay. Binding was saturable only in the presence of the actin capping protein, gelsolin. In the presence of gelsolin, the amount of actin bound at saturation to three different membrane preparations was 80, 120, and 200 micrograms/mg of membrane protein. The respective concentrations of actin at half-saturation were 8, 12, and 18 micrograms/ml. The binding curves were sigmoidal, indicating positive cooperativity at low actin concentrations. This cooperativity appeared to be due to actin-actin associations during polymerization, since phalloidin converted the curve to a hyperbolic shape. In kinetic experiments, actin added as monomers bound to membranes at a rate of 0.6 microgram ml-1 min-1, while pre-polymerized actin bound at a rate of 3.0 micrograms ml-1 min-1. Even in the absence of phalloidin, actin bound to membranes at concentrations well below the normal critical concentration. This membrane-bound actin stained with rhodamine- phalloidin and was cross-linked by m-maleimidobenzoyl succinimide ester, a bifunctional cross-linker, into multimers with the same pattern observed for cross-linked F-actin. We conclude that D. discoideum plasma membranes bind actin specifically and saturably and that these membranes organize actin into filaments below the normal critical concentration for polymerization. This interaction probably occurs between multiple binding sites on the membrane and the side of the actin filament, and may be related to the clustering of membrane proteins. |
format | Text |
id | pubmed-2114255 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1986 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21142552008-05-01 Binding and assembly of actin filaments by plasma membranes from Dictyostelium discoideum J Cell Biol Articles The binding of native, 125I-Bolton-Hunter-labeled actin to purified Dictyostelium discoideum plasma membranes was measured using a sedimentation assay. Binding was saturable only in the presence of the actin capping protein, gelsolin. In the presence of gelsolin, the amount of actin bound at saturation to three different membrane preparations was 80, 120, and 200 micrograms/mg of membrane protein. The respective concentrations of actin at half-saturation were 8, 12, and 18 micrograms/ml. The binding curves were sigmoidal, indicating positive cooperativity at low actin concentrations. This cooperativity appeared to be due to actin-actin associations during polymerization, since phalloidin converted the curve to a hyperbolic shape. In kinetic experiments, actin added as monomers bound to membranes at a rate of 0.6 microgram ml-1 min-1, while pre-polymerized actin bound at a rate of 3.0 micrograms ml-1 min-1. Even in the absence of phalloidin, actin bound to membranes at concentrations well below the normal critical concentration. This membrane-bound actin stained with rhodamine- phalloidin and was cross-linked by m-maleimidobenzoyl succinimide ester, a bifunctional cross-linker, into multimers with the same pattern observed for cross-linked F-actin. We conclude that D. discoideum plasma membranes bind actin specifically and saturably and that these membranes organize actin into filaments below the normal critical concentration for polymerization. This interaction probably occurs between multiple binding sites on the membrane and the side of the actin filament, and may be related to the clustering of membrane proteins. The Rockefeller University Press 1986-06-01 /pmc/articles/PMC2114255/ /pubmed/2423531 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Binding and assembly of actin filaments by plasma membranes from Dictyostelium discoideum |
title | Binding and assembly of actin filaments by plasma membranes from Dictyostelium discoideum |
title_full | Binding and assembly of actin filaments by plasma membranes from Dictyostelium discoideum |
title_fullStr | Binding and assembly of actin filaments by plasma membranes from Dictyostelium discoideum |
title_full_unstemmed | Binding and assembly of actin filaments by plasma membranes from Dictyostelium discoideum |
title_short | Binding and assembly of actin filaments by plasma membranes from Dictyostelium discoideum |
title_sort | binding and assembly of actin filaments by plasma membranes from dictyostelium discoideum |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114255/ https://www.ncbi.nlm.nih.gov/pubmed/2423531 |