Cargando…

Dynamics of microtubule depolymerization in monocytes

Human monocytes, which contain few interphase microtubules (35.+/- 7.7), were used to study the dynamics of microtubule depolymerization. Steady-state microtubule assembly was abruptly blocked with either high concentrations of nocodazole (10 micrograms/ml) or exposure to cold temperature (3 degrees...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1986
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114271/
https://www.ncbi.nlm.nih.gov/pubmed/3519619
_version_ 1782140380785934336
collection PubMed
description Human monocytes, which contain few interphase microtubules (35.+/- 7.7), were used to study the dynamics of microtubule depolymerization. Steady-state microtubule assembly was abruptly blocked with either high concentrations of nocodazole (10 micrograms/ml) or exposure to cold temperature (3 degrees C). At various times after inhibition of assembly, cells were processed for anti-tubulin immunofluorescence microscopy. Stained cells were observed with an intensified video camera attached to the fluorescence microscope. A tracing of the entire length of each individual microtubule was made from the image on the television monitor by focusing up and down through the cell. The tracings were then digitized into a computer. All microtubules were seen to originate from the centrosome, with an average length in control cells of 7.1 +/- 2.7 microns (n = 957 microtubules). During depolymerization, the total microtubule polymer and the number of microtubules per cell decreased rapidly. In contrast, there was a slow decrease in the average length of the persisting microtubules. The half- time for both the loss of total microtubule polymer and microtubule number per cell was approximately 40 s for nocodazole-treated cells. The rate-limiting step in the depolymerization process was the rate of initiation of disassembly. Once initiated, depolymerization appeared catastrophic. Further kinetic analysis revealed two classes of microtubules: 70% of the microtubule population was very labile and initiated depolymerization at a rate approximately 23 times faster than a minor population of persistent microtubules. Cold treatment yielded qualitatively similar characteristics of depolymerization, but the initiation rates were slower. In both cases there was a significant asynchrony and heterogeneity in the initiation of depolymerization among the population of microtubules.
format Text
id pubmed-2114271
institution National Center for Biotechnology Information
language English
publishDate 1986
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21142712008-05-01 Dynamics of microtubule depolymerization in monocytes J Cell Biol Articles Human monocytes, which contain few interphase microtubules (35.+/- 7.7), were used to study the dynamics of microtubule depolymerization. Steady-state microtubule assembly was abruptly blocked with either high concentrations of nocodazole (10 micrograms/ml) or exposure to cold temperature (3 degrees C). At various times after inhibition of assembly, cells were processed for anti-tubulin immunofluorescence microscopy. Stained cells were observed with an intensified video camera attached to the fluorescence microscope. A tracing of the entire length of each individual microtubule was made from the image on the television monitor by focusing up and down through the cell. The tracings were then digitized into a computer. All microtubules were seen to originate from the centrosome, with an average length in control cells of 7.1 +/- 2.7 microns (n = 957 microtubules). During depolymerization, the total microtubule polymer and the number of microtubules per cell decreased rapidly. In contrast, there was a slow decrease in the average length of the persisting microtubules. The half- time for both the loss of total microtubule polymer and microtubule number per cell was approximately 40 s for nocodazole-treated cells. The rate-limiting step in the depolymerization process was the rate of initiation of disassembly. Once initiated, depolymerization appeared catastrophic. Further kinetic analysis revealed two classes of microtubules: 70% of the microtubule population was very labile and initiated depolymerization at a rate approximately 23 times faster than a minor population of persistent microtubules. Cold treatment yielded qualitatively similar characteristics of depolymerization, but the initiation rates were slower. In both cases there was a significant asynchrony and heterogeneity in the initiation of depolymerization among the population of microtubules. The Rockefeller University Press 1986-06-01 /pmc/articles/PMC2114271/ /pubmed/3519619 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Dynamics of microtubule depolymerization in monocytes
title Dynamics of microtubule depolymerization in monocytes
title_full Dynamics of microtubule depolymerization in monocytes
title_fullStr Dynamics of microtubule depolymerization in monocytes
title_full_unstemmed Dynamics of microtubule depolymerization in monocytes
title_short Dynamics of microtubule depolymerization in monocytes
title_sort dynamics of microtubule depolymerization in monocytes
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114271/
https://www.ncbi.nlm.nih.gov/pubmed/3519619