Cargando…

Microtubules and the endoplasmic reticulum are highly interdependent structures

The interrelationships of the endoplasmic reticulum (ER), microtubules, and intermediate filaments were studied in the peripheral regions of thin, spread fibroblasts, epithelial, and vascular endothelial cells in culture. We combined a fluorescent dye staining technique to localize the ER with immun...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1986
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114338/
https://www.ncbi.nlm.nih.gov/pubmed/3533956
_version_ 1782140396621529088
collection PubMed
description The interrelationships of the endoplasmic reticulum (ER), microtubules, and intermediate filaments were studied in the peripheral regions of thin, spread fibroblasts, epithelial, and vascular endothelial cells in culture. We combined a fluorescent dye staining technique to localize the ER with immunofluorescence to localize microtubules or intermediate filaments in the same cell. Microtubules and the ER are sparse in the lamellipodia, but intermediate filaments are usually completely absent. These relationships indicate that microtubules and the ER advance into the lamellipodia before intermediate filaments. We observed that microtubules and tubules of the ER have nearly identical distributions in lamellipodia, where new extensions of both are taking place. We perturbed microtubules by nocodazole, cold temperature, or hypotonic shock, and observed the effects on the ER distribution. On the basis of our observations in untreated cells and our experiments with microtubule perturbation, we conclude that microtubules and the ER are highly interdependent in two ways: (a) polymerization of individual microtubules and extension of individual ER tubules occur together at the level of resolution of the fluorescence microscope, and (b) depolymerization of microtubules does not disrupt the ER network in the short term (15 min), but prolonged absence of microtubules (2 h) leads to a slow retraction of the ER network towards the cell center, indicating that over longer periods of time, the extended state of the entire ER network requires the microtubule system.
format Text
id pubmed-2114338
institution National Center for Biotechnology Information
language English
publishDate 1986
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21143382008-05-01 Microtubules and the endoplasmic reticulum are highly interdependent structures J Cell Biol Articles The interrelationships of the endoplasmic reticulum (ER), microtubules, and intermediate filaments were studied in the peripheral regions of thin, spread fibroblasts, epithelial, and vascular endothelial cells in culture. We combined a fluorescent dye staining technique to localize the ER with immunofluorescence to localize microtubules or intermediate filaments in the same cell. Microtubules and the ER are sparse in the lamellipodia, but intermediate filaments are usually completely absent. These relationships indicate that microtubules and the ER advance into the lamellipodia before intermediate filaments. We observed that microtubules and tubules of the ER have nearly identical distributions in lamellipodia, where new extensions of both are taking place. We perturbed microtubules by nocodazole, cold temperature, or hypotonic shock, and observed the effects on the ER distribution. On the basis of our observations in untreated cells and our experiments with microtubule perturbation, we conclude that microtubules and the ER are highly interdependent in two ways: (a) polymerization of individual microtubules and extension of individual ER tubules occur together at the level of resolution of the fluorescence microscope, and (b) depolymerization of microtubules does not disrupt the ER network in the short term (15 min), but prolonged absence of microtubules (2 h) leads to a slow retraction of the ER network towards the cell center, indicating that over longer periods of time, the extended state of the entire ER network requires the microtubule system. The Rockefeller University Press 1986-10-01 /pmc/articles/PMC2114338/ /pubmed/3533956 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Microtubules and the endoplasmic reticulum are highly interdependent structures
title Microtubules and the endoplasmic reticulum are highly interdependent structures
title_full Microtubules and the endoplasmic reticulum are highly interdependent structures
title_fullStr Microtubules and the endoplasmic reticulum are highly interdependent structures
title_full_unstemmed Microtubules and the endoplasmic reticulum are highly interdependent structures
title_short Microtubules and the endoplasmic reticulum are highly interdependent structures
title_sort microtubules and the endoplasmic reticulum are highly interdependent structures
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114338/
https://www.ncbi.nlm.nih.gov/pubmed/3533956