Cargando…

A novel mitotic spindle pole component that originates from the cytoplasm during prophase

Several unique aspects of mitotic spindle formation have been revealed by investigation of an autoantibody present in the serum of a patient with the CREST (calcinosis, Raynaud's phenomenon, esophageal dysmotility, schlerodacytyly, and telangiectasias) syndrome. This antibody was previously sho...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1986
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114391/
https://www.ncbi.nlm.nih.gov/pubmed/3536956
Descripción
Sumario:Several unique aspects of mitotic spindle formation have been revealed by investigation of an autoantibody present in the serum of a patient with the CREST (calcinosis, Raynaud's phenomenon, esophageal dysmotility, schlerodacytyly, and telangiectasias) syndrome. This antibody was previously shown to label at the spindle poles of metaphase and anaphase cells and to be absent from interphase cells. We show here that the serum stained discrete cytoplasmic foci in early prophase cells and only later localized to the spindle poles. The cytoplasmic distribution of the antigen was also seen in nocodazole- arrested cells and prophase cells in populations treated with taxol. In normal and taxol-treated cells, the microtubules appeared to emanate from the cytoplasmic foci and polar stain, and in cells released from nocodazole block, microtubules regrew from antigen-containing centers. This characteristic distribution suggests that the antigen is part of a microtubule organizing center. Thus, we propose that a prophase originating polar antigen functions in spindle pole organization as a coalescing microtubule organizing center that is present only during mitosis. Characterization of the serum showed reactions with multiple proteins at 115, 110, 50, 36, 30, and 28 kD. However, affinity-eluted antibody from the 115/110-kD bands was shown to specifically label the spindle pole and cytosolic foci in prophase cells.