Cargando…

Topography of N-CAM structural and functional determinants. I. Classification of monoclonal antibody epitopes

12 distinct neural cell adhesion molecule (N-CAM) epitopes, each recognized by a different monoclonal antibody (mAb), have been characterized in terms of the major structural and functional features of the molecule. Seven antibodies, each recognizing the amino-terminal region of the molecule, altere...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1986
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114397/
https://www.ncbi.nlm.nih.gov/pubmed/2430976
Descripción
Sumario:12 distinct neural cell adhesion molecule (N-CAM) epitopes, each recognized by a different monoclonal antibody (mAb), have been characterized in terms of the major structural and functional features of the molecule. Seven antibodies, each recognizing the amino-terminal region of the molecule, altered the rate of N-CAM-mediated adhesion. Four of these were inhibitors, two of which also recognized a heparin- binding N-CAM fragment. The other three antibodies specifically enhanced the rate of N-CAM-mediated adhesion. Three epitopes, one polypeptide- and two carbohydrate-dependent, were associated with the sialic acid-rich central portion of the molecule. The remaining two antibodies were found to react with intracellular determinants, and are specific for the largest of the three major N-CAM polypeptide forms. Studies on the ability of one antibody to hinder recognition of native N-CAM by another antibody suggested that the epitopes associated with N- CAM binding functions are in close proximity compared with the other determinants. The classification of these mAb epitopes has allowed the topographical placement of key N-CAM features, as described in the following paper, and provides valuable probes for analysis of both the structure and function of N-CAM.