Cargando…

100-kD coated vesicle proteins: molecular heterogeneity and intracellular distribution studied with monoclonal antibodies

Proteins with molecular weights of around 100,000 (designated 100K) are found in all coated vesicles. Five monoclonal antibodies have been raised against the major 100K proteins of bovine brain coated vesicles, which migrate on SDS gels as three closely spaced bands. One antibody stains the middle b...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1987
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114429/
https://www.ncbi.nlm.nih.gov/pubmed/2881934
_version_ 1782140417888747520
collection PubMed
description Proteins with molecular weights of around 100,000 (designated 100K) are found in all coated vesicles. Five monoclonal antibodies have been raised against the major 100K proteins of bovine brain coated vesicles, which migrate on SDS gels as three closely spaced bands. One antibody stains the middle band (band B), two stain both upper and lower bands (bands A and C), and two stain the lower band (band C) only. Thus, the polypeptides in bands A and C are related (but not identical), a result confirmed by NH2-terminal sequencing. Other tissues were found to express proteins corresponding to, and co-migrating with, bands B and C but not band A. Only the two antibodies that recognize both A and C stained fixed and permeabilized tissue culture cells; they both showed a punctate pattern in the plane of the plasma membrane. Double labeling with anti-clathrin antibodies confirmed that the dots correspond to coated pits and vesicles. However, perinuclear staining seen with anti- clathrin, corresponding to Golgi-derived coated vesicles, was conspicuously absent with the two monoclonal antibodies. Affinity- purified polyclonal antisera against the 100K proteins, reported earlier, gave perinuclear as well as punctate staining; these included one antiserum which gave mainly perinuclear staining (Robinson, M. S., and B. M. F. Pearse, 1986, J. Cell Biol., 102:48-54). Thus, different 100K proteins appear to be found in different membrane compartments. Since the 100K proteins are thought to lie between clathrin and the membrane proteins of the vesicle, these results may help to explain how different membrane proteins can be sorted into coated vesicles in different parts of the cell.
format Text
id pubmed-2114429
institution National Center for Biotechnology Information
language English
publishDate 1987
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21144292008-05-01 100-kD coated vesicle proteins: molecular heterogeneity and intracellular distribution studied with monoclonal antibodies J Cell Biol Articles Proteins with molecular weights of around 100,000 (designated 100K) are found in all coated vesicles. Five monoclonal antibodies have been raised against the major 100K proteins of bovine brain coated vesicles, which migrate on SDS gels as three closely spaced bands. One antibody stains the middle band (band B), two stain both upper and lower bands (bands A and C), and two stain the lower band (band C) only. Thus, the polypeptides in bands A and C are related (but not identical), a result confirmed by NH2-terminal sequencing. Other tissues were found to express proteins corresponding to, and co-migrating with, bands B and C but not band A. Only the two antibodies that recognize both A and C stained fixed and permeabilized tissue culture cells; they both showed a punctate pattern in the plane of the plasma membrane. Double labeling with anti-clathrin antibodies confirmed that the dots correspond to coated pits and vesicles. However, perinuclear staining seen with anti- clathrin, corresponding to Golgi-derived coated vesicles, was conspicuously absent with the two monoclonal antibodies. Affinity- purified polyclonal antisera against the 100K proteins, reported earlier, gave perinuclear as well as punctate staining; these included one antiserum which gave mainly perinuclear staining (Robinson, M. S., and B. M. F. Pearse, 1986, J. Cell Biol., 102:48-54). Thus, different 100K proteins appear to be found in different membrane compartments. Since the 100K proteins are thought to lie between clathrin and the membrane proteins of the vesicle, these results may help to explain how different membrane proteins can be sorted into coated vesicles in different parts of the cell. The Rockefeller University Press 1987-04-01 /pmc/articles/PMC2114429/ /pubmed/2881934 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
100-kD coated vesicle proteins: molecular heterogeneity and intracellular distribution studied with monoclonal antibodies
title 100-kD coated vesicle proteins: molecular heterogeneity and intracellular distribution studied with monoclonal antibodies
title_full 100-kD coated vesicle proteins: molecular heterogeneity and intracellular distribution studied with monoclonal antibodies
title_fullStr 100-kD coated vesicle proteins: molecular heterogeneity and intracellular distribution studied with monoclonal antibodies
title_full_unstemmed 100-kD coated vesicle proteins: molecular heterogeneity and intracellular distribution studied with monoclonal antibodies
title_short 100-kD coated vesicle proteins: molecular heterogeneity and intracellular distribution studied with monoclonal antibodies
title_sort 100-kd coated vesicle proteins: molecular heterogeneity and intracellular distribution studied with monoclonal antibodies
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114429/
https://www.ncbi.nlm.nih.gov/pubmed/2881934