Cargando…
Distinct molecular interactions mediate neuronal process outgrowth on non-neuronal cell surfaces and extracellular matrices
We have compared neurite outgrowth on extracellular matrix (ECM) constituents to outgrowth on glial and muscle cell surfaces. Embryonic chick ciliary ganglion (CG) neurons regenerate neurites rapidly on surfaces coated with laminin (LN), fibronectin (FN), conditioned media (CM) from several non-neur...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1986
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114572/ https://www.ncbi.nlm.nih.gov/pubmed/3025222 |
_version_ | 1782140451267018752 |
---|---|
collection | PubMed |
description | We have compared neurite outgrowth on extracellular matrix (ECM) constituents to outgrowth on glial and muscle cell surfaces. Embryonic chick ciliary ganglion (CG) neurons regenerate neurites rapidly on surfaces coated with laminin (LN), fibronectin (FN), conditioned media (CM) from several non-neuronal cell types that secrete LN, and on intact extracellular matrices. Neurite outgrowth on all of these substrates is blocked by two monoclonal antibodies, CSAT and JG22, that prevent the adhesion of many cells, including neurons, to the ECM constituents LN, FN, and collagen. Neurite outgrowth is inhibited even on mixed LN/poly-D-lysine substrates where neuronal attachment is independent of LN. Therefore, neuronal process outgrowth on extracellular matrices requires the function of neuronal cell surface molecules recognized by these antibodies. The surfaces of cultured astrocytes, Schwann cells, and skeletal myotubes also promote rapid process outgrowth from CG neurons. Neurite outgrowth on these surfaces, though, is not prevented by CSAT or JG22 antibodies. In addition, antibodies to a LN/proteoglycan complex that block neurite outgrowth on several LN-containing CM factors and on an ECM extract failed to inhibit cell surface-stimulated neurite outgrowth. After extraction with a nonionic detergent, Schwann cells and myotubes continue to support rapid neurite outgrowth. However, the activity associated with the detergent insoluble residue is blocked by CSAT and JG22 antibodies. Detergent extraction of astrocytes, in contrast, removes all neurite- promoting activity. These results provide evidence for at least two types of neuronal interactions with cells that promote neurite outgrowth. One involves adhesive proteins present in the ECM and ECM receptors on neurons. The second is mediated through detergent- extractable macromolecules present on non-neuronal cell surfaces and different, uncharacterized receptor(s) on neurons. Schwann cells and skeletal myotubes appear to promote neurite outgrowth by both mechanisms. |
format | Text |
id | pubmed-2114572 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1986 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21145722008-05-01 Distinct molecular interactions mediate neuronal process outgrowth on non-neuronal cell surfaces and extracellular matrices J Cell Biol Articles We have compared neurite outgrowth on extracellular matrix (ECM) constituents to outgrowth on glial and muscle cell surfaces. Embryonic chick ciliary ganglion (CG) neurons regenerate neurites rapidly on surfaces coated with laminin (LN), fibronectin (FN), conditioned media (CM) from several non-neuronal cell types that secrete LN, and on intact extracellular matrices. Neurite outgrowth on all of these substrates is blocked by two monoclonal antibodies, CSAT and JG22, that prevent the adhesion of many cells, including neurons, to the ECM constituents LN, FN, and collagen. Neurite outgrowth is inhibited even on mixed LN/poly-D-lysine substrates where neuronal attachment is independent of LN. Therefore, neuronal process outgrowth on extracellular matrices requires the function of neuronal cell surface molecules recognized by these antibodies. The surfaces of cultured astrocytes, Schwann cells, and skeletal myotubes also promote rapid process outgrowth from CG neurons. Neurite outgrowth on these surfaces, though, is not prevented by CSAT or JG22 antibodies. In addition, antibodies to a LN/proteoglycan complex that block neurite outgrowth on several LN-containing CM factors and on an ECM extract failed to inhibit cell surface-stimulated neurite outgrowth. After extraction with a nonionic detergent, Schwann cells and myotubes continue to support rapid neurite outgrowth. However, the activity associated with the detergent insoluble residue is blocked by CSAT and JG22 antibodies. Detergent extraction of astrocytes, in contrast, removes all neurite- promoting activity. These results provide evidence for at least two types of neuronal interactions with cells that promote neurite outgrowth. One involves adhesive proteins present in the ECM and ECM receptors on neurons. The second is mediated through detergent- extractable macromolecules present on non-neuronal cell surfaces and different, uncharacterized receptor(s) on neurons. Schwann cells and skeletal myotubes appear to promote neurite outgrowth by both mechanisms. The Rockefeller University Press 1986-12-01 /pmc/articles/PMC2114572/ /pubmed/3025222 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Distinct molecular interactions mediate neuronal process outgrowth on non-neuronal cell surfaces and extracellular matrices |
title | Distinct molecular interactions mediate neuronal process outgrowth on non-neuronal cell surfaces and extracellular matrices |
title_full | Distinct molecular interactions mediate neuronal process outgrowth on non-neuronal cell surfaces and extracellular matrices |
title_fullStr | Distinct molecular interactions mediate neuronal process outgrowth on non-neuronal cell surfaces and extracellular matrices |
title_full_unstemmed | Distinct molecular interactions mediate neuronal process outgrowth on non-neuronal cell surfaces and extracellular matrices |
title_short | Distinct molecular interactions mediate neuronal process outgrowth on non-neuronal cell surfaces and extracellular matrices |
title_sort | distinct molecular interactions mediate neuronal process outgrowth on non-neuronal cell surfaces and extracellular matrices |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114572/ https://www.ncbi.nlm.nih.gov/pubmed/3025222 |