Cargando…

Alteration of the cytoplasmic domain of the membrane-spanning glycoprotein p62 of Semliki Forest virus does not affect its polar distribution in established lines of Madin-Darby canine kidney cells

Expression of the Semliki Forest virus p62/E2 protein was studied in the polarized epithelial cell line Madin-Darby canine kidney (MDCK). After infection this transmembrane protein, together with the other spike subunit E1, accumulates at the basolateral surface of MDCK cells (Fuller, S. D., C.-H. v...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1986
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114582/
https://www.ncbi.nlm.nih.gov/pubmed/3539942
_version_ 1782140453638897664
collection PubMed
description Expression of the Semliki Forest virus p62/E2 protein was studied in the polarized epithelial cell line Madin-Darby canine kidney (MDCK). After infection this transmembrane protein, together with the other spike subunit E1, accumulates at the basolateral surface of MDCK cells (Fuller, S. D., C.-H. von Bonsdorff, and K. Simons, 1985, EMBO (Eur. Mol. Biol. Organ.) J., 4:2475-2485). The cDNAs encoding truncated forms of the protein were used to stably transform MDCK cells to examine the role of subunit oligomerization (E1-E2) and the cytoplasmic domain of p62/E2 in directed transport to the basolateral surface. The biochemical characteristics and polarity of the expressed proteins were studied using cell monolayers grown on nitrocellulose filters. A wild- type form of p62/E2, in the absence of E1, and two forms having either 15 or 3 of the wild-type 31-amino acid carboxyl cytoplasmic domain were all localized to the basolateral surface. These results indicate that the cytoplasmic domain of E2 does not contain the information essential for directed transport to the plasma membrane, and imply that this information resides in either the lumenal and/or membrane-spanning segments of this transmembrane protein.
format Text
id pubmed-2114582
institution National Center for Biotechnology Information
language English
publishDate 1986
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21145822008-05-01 Alteration of the cytoplasmic domain of the membrane-spanning glycoprotein p62 of Semliki Forest virus does not affect its polar distribution in established lines of Madin-Darby canine kidney cells J Cell Biol Articles Expression of the Semliki Forest virus p62/E2 protein was studied in the polarized epithelial cell line Madin-Darby canine kidney (MDCK). After infection this transmembrane protein, together with the other spike subunit E1, accumulates at the basolateral surface of MDCK cells (Fuller, S. D., C.-H. von Bonsdorff, and K. Simons, 1985, EMBO (Eur. Mol. Biol. Organ.) J., 4:2475-2485). The cDNAs encoding truncated forms of the protein were used to stably transform MDCK cells to examine the role of subunit oligomerization (E1-E2) and the cytoplasmic domain of p62/E2 in directed transport to the basolateral surface. The biochemical characteristics and polarity of the expressed proteins were studied using cell monolayers grown on nitrocellulose filters. A wild- type form of p62/E2, in the absence of E1, and two forms having either 15 or 3 of the wild-type 31-amino acid carboxyl cytoplasmic domain were all localized to the basolateral surface. These results indicate that the cytoplasmic domain of E2 does not contain the information essential for directed transport to the plasma membrane, and imply that this information resides in either the lumenal and/or membrane-spanning segments of this transmembrane protein. The Rockefeller University Press 1986-12-01 /pmc/articles/PMC2114582/ /pubmed/3539942 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Alteration of the cytoplasmic domain of the membrane-spanning glycoprotein p62 of Semliki Forest virus does not affect its polar distribution in established lines of Madin-Darby canine kidney cells
title Alteration of the cytoplasmic domain of the membrane-spanning glycoprotein p62 of Semliki Forest virus does not affect its polar distribution in established lines of Madin-Darby canine kidney cells
title_full Alteration of the cytoplasmic domain of the membrane-spanning glycoprotein p62 of Semliki Forest virus does not affect its polar distribution in established lines of Madin-Darby canine kidney cells
title_fullStr Alteration of the cytoplasmic domain of the membrane-spanning glycoprotein p62 of Semliki Forest virus does not affect its polar distribution in established lines of Madin-Darby canine kidney cells
title_full_unstemmed Alteration of the cytoplasmic domain of the membrane-spanning glycoprotein p62 of Semliki Forest virus does not affect its polar distribution in established lines of Madin-Darby canine kidney cells
title_short Alteration of the cytoplasmic domain of the membrane-spanning glycoprotein p62 of Semliki Forest virus does not affect its polar distribution in established lines of Madin-Darby canine kidney cells
title_sort alteration of the cytoplasmic domain of the membrane-spanning glycoprotein p62 of semliki forest virus does not affect its polar distribution in established lines of madin-darby canine kidney cells
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114582/
https://www.ncbi.nlm.nih.gov/pubmed/3539942