Cargando…

Differential localization of distinct keratin mRNA-species in mouse tongue epithelium by in situ hybridization with specific cDNA probes

The tongue of the adult mouse is covered by a multilayered squamous epithelium which is continuous on the ventral surface, however interrupted on the dorsal surface by many filiform and few fungiform papillae. The filiform papillae themselves are subdivided into an anterior and posterior unit exhibi...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1986
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114598/
https://www.ncbi.nlm.nih.gov/pubmed/2432070
Descripción
Sumario:The tongue of the adult mouse is covered by a multilayered squamous epithelium which is continuous on the ventral surface, however interrupted on the dorsal surface by many filiform and few fungiform papillae. The filiform papillae themselves are subdivided into an anterior and posterior unit exhibiting different forms of keratinization. Thus, the entire epithelium shows a pronounced morphological diversity of well recognizable tissue units. We have used a highly sensitive in situ hybridization technique to investigate the differential expression of keratin mRNAs in the tongue epithelium. The hybridization probes used were cDNA restriction fragments complementary to the most specific 3'-regions of any given keratin mRNA. We could show that independent of the morphologically different tongue regions, all basal cells uniformly express the mRNA of a type I 52-kD keratin, typical also for basal cells of the epidermis. Immediately above the homogenous basal layer a vertically oriented specialization of the keratin expression occurs within the morphological tissue units. Thus the dorsal interpapillary and ventral epithelium express the mRNAs of a type II 57-kD and a type I 47-kD keratin pair. In contrast, in the anterior unit of the filiform papillae, only the 47-kD mRNA is present, indicating that this keratin may be coexpressed in tongue epithelium with different type II partners. In suprabasal cells of both, the fungiform papillae and the posterior unit of the filiform papillae, a mRNA of a type I 59-kD keratin could be detected; however, its type II 67-kD epidermal counterpart seems not to be present in these cells. Most surprisingly, in distinct cells of both types of papillae, a type I 50-kD keratin mRNA could be localized which usually is associated with epidermal hyperproliferation. In conclusion, the in situ hybridization technique applied has been proved to be a powerful method for detailed studies of differentiation processes, especially in morphologically complex epithelia.