Cargando…

Evidence that major 78-44-kD concanavalin A-binding glycopolypeptides in pig epidermis arise from the degradation of desmosomal glycoproteins during terminal differentiation

The major concanavalin A (Con A)-binding component in urea/deoxycholate/mercaptoethanol extracts from pig ear epidermis had an apparent Mr of 78 kD. In indirect immunofluorescence affinity- purified polyclonal antibodies against this glycopolypeptide strongly stained the surface of suprabasal cells...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1987
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114695/
https://www.ncbi.nlm.nih.gov/pubmed/3320061
_version_ 1782140480558989312
collection PubMed
description The major concanavalin A (Con A)-binding component in urea/deoxycholate/mercaptoethanol extracts from pig ear epidermis had an apparent Mr of 78 kD. In indirect immunofluorescence affinity- purified polyclonal antibodies against this glycopolypeptide strongly stained the surface of suprabasal cells in the epidermis of pig and human skin. Immunocytochemical labeling with gold-labeled second antibody localized this staining to externally disposed, trypsin- sensitive components of desmosomes. Western blotting showed that the 78- kD glycopolypeptide was immunologically related to several other Con A- binding components in pig epidermis. Immunoreactive components with Mr of 115 and 100 kD were membrane-bound, appeared to be susceptible to trypsin in intact epidermis, and were absent from the stratum corneum. Immunoreactive components of lower Mr (78-44 kD) were not membrane- bound, were resistant to trypsin in intact tissue, and were present predominantly in the keratinized layers of pig epidermis. The 115-44-kD glycopolypeptides were also recognized by antisera raised against desmoglein II/desmocollin glycoproteins isolated from bovine spinous layer desmosomes. In addition, these antisera reacted with 120- and 105- kD bands that were apparently not recognized by the anti-78-kD glycopolypeptide antiserum in immunoblotting. In immune precipitation the anti-78-kD glycopolypeptide and antidesmoglein II/desmocollin antisera precipitated comparable amounts of the radioiodinated 78-44-kD components. Both antisera also precipitated the 120- and 105-kD components although the anti-78-kD glycopolypeptide serum was less effective. Little reaction with the 115- and 105-kD components was observed in immune precipitation with either serum. Proteolytic peptide mapping confirmed that the various immunoreactive glycopolypeptides were biochemically as well as immunologically related. The results suggest that terminal differentiation in pig epidermis is accompanied by the orderly degradation of desmoglein II/desmocollin glycoproteins resulting in the accumulation of 78-44-kD glycopolypeptides in the stratum corneum. These glycopolypeptides may represent functionally important nonmembranous domains of cell-adhesion molecules in desmosomes.
format Text
id pubmed-2114695
institution National Center for Biotechnology Information
language English
publishDate 1987
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21146952008-05-01 Evidence that major 78-44-kD concanavalin A-binding glycopolypeptides in pig epidermis arise from the degradation of desmosomal glycoproteins during terminal differentiation J Cell Biol Articles The major concanavalin A (Con A)-binding component in urea/deoxycholate/mercaptoethanol extracts from pig ear epidermis had an apparent Mr of 78 kD. In indirect immunofluorescence affinity- purified polyclonal antibodies against this glycopolypeptide strongly stained the surface of suprabasal cells in the epidermis of pig and human skin. Immunocytochemical labeling with gold-labeled second antibody localized this staining to externally disposed, trypsin- sensitive components of desmosomes. Western blotting showed that the 78- kD glycopolypeptide was immunologically related to several other Con A- binding components in pig epidermis. Immunoreactive components with Mr of 115 and 100 kD were membrane-bound, appeared to be susceptible to trypsin in intact epidermis, and were absent from the stratum corneum. Immunoreactive components of lower Mr (78-44 kD) were not membrane- bound, were resistant to trypsin in intact tissue, and were present predominantly in the keratinized layers of pig epidermis. The 115-44-kD glycopolypeptides were also recognized by antisera raised against desmoglein II/desmocollin glycoproteins isolated from bovine spinous layer desmosomes. In addition, these antisera reacted with 120- and 105- kD bands that were apparently not recognized by the anti-78-kD glycopolypeptide antiserum in immunoblotting. In immune precipitation the anti-78-kD glycopolypeptide and antidesmoglein II/desmocollin antisera precipitated comparable amounts of the radioiodinated 78-44-kD components. Both antisera also precipitated the 120- and 105-kD components although the anti-78-kD glycopolypeptide serum was less effective. Little reaction with the 115- and 105-kD components was observed in immune precipitation with either serum. Proteolytic peptide mapping confirmed that the various immunoreactive glycopolypeptides were biochemically as well as immunologically related. The results suggest that terminal differentiation in pig epidermis is accompanied by the orderly degradation of desmoglein II/desmocollin glycoproteins resulting in the accumulation of 78-44-kD glycopolypeptides in the stratum corneum. These glycopolypeptides may represent functionally important nonmembranous domains of cell-adhesion molecules in desmosomes. The Rockefeller University Press 1987-12-01 /pmc/articles/PMC2114695/ /pubmed/3320061 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Evidence that major 78-44-kD concanavalin A-binding glycopolypeptides in pig epidermis arise from the degradation of desmosomal glycoproteins during terminal differentiation
title Evidence that major 78-44-kD concanavalin A-binding glycopolypeptides in pig epidermis arise from the degradation of desmosomal glycoproteins during terminal differentiation
title_full Evidence that major 78-44-kD concanavalin A-binding glycopolypeptides in pig epidermis arise from the degradation of desmosomal glycoproteins during terminal differentiation
title_fullStr Evidence that major 78-44-kD concanavalin A-binding glycopolypeptides in pig epidermis arise from the degradation of desmosomal glycoproteins during terminal differentiation
title_full_unstemmed Evidence that major 78-44-kD concanavalin A-binding glycopolypeptides in pig epidermis arise from the degradation of desmosomal glycoproteins during terminal differentiation
title_short Evidence that major 78-44-kD concanavalin A-binding glycopolypeptides in pig epidermis arise from the degradation of desmosomal glycoproteins during terminal differentiation
title_sort evidence that major 78-44-kd concanavalin a-binding glycopolypeptides in pig epidermis arise from the degradation of desmosomal glycoproteins during terminal differentiation
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114695/
https://www.ncbi.nlm.nih.gov/pubmed/3320061