Cargando…

Temperature-dependent reversible assembly of taxol-treated microtubules

Taxol is a plant alkaloid that binds to and strongly stabilizes microtubules. Taxol-treated microtubules resist depolymerization under a variety of conditions that readily disassemble untreated microtubules. We report here that taxol-treated microtubules can be induced to disassemble by a combinatio...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1987
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114708/
https://www.ncbi.nlm.nih.gov/pubmed/2891714
_version_ 1782140483677454336
collection PubMed
description Taxol is a plant alkaloid that binds to and strongly stabilizes microtubules. Taxol-treated microtubules resist depolymerization under a variety of conditions that readily disassemble untreated microtubules. We report here that taxol-treated microtubules can be induced to disassemble by a combination of depolymerizating conditions. Reversible cycles of disassembly and reassembly were carried out using taxol-containing microtubules from calf brain and sea urchin eggs by shifting temperature in the presence of millimolar levels of Ca2+. Microtubules depolymerized completely, yielding dimers and ring-shaped oligomers as revealed by negative stain electron microscopy and Bio-Gel A-15m chromatography, and reassembled into well-formed microtubule polymer structures. Microtubule-associated proteins (MAPs), including species previously identified only by taxol-based purification such as MAP 1B and kinesin, were found to copurify with tubulin through reversible assembly cycles. To determine whether taxol remained bound to tubulin subunits, we subjected depolymerized taxol-treated microtubule protein to Sephadex G-25 chromatography, and the fractions were assayed for taxol content by reverse-phase HPLC. Taxol was found to be dissociated from the depolymerized microtubules. Protein treated in this way was found to be competent to reassemble, but now required conditions comparable with those for protein that had never been exposed to taxol. Thus, the binding of taxol to tubulin can be reversed. This has implications for the mechanism of taxol action and for the purification of microtubules from a wide variety of sources for use in self-assembly experiments.
format Text
id pubmed-2114708
institution National Center for Biotechnology Information
language English
publishDate 1987
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21147082008-05-01 Temperature-dependent reversible assembly of taxol-treated microtubules J Cell Biol Articles Taxol is a plant alkaloid that binds to and strongly stabilizes microtubules. Taxol-treated microtubules resist depolymerization under a variety of conditions that readily disassemble untreated microtubules. We report here that taxol-treated microtubules can be induced to disassemble by a combination of depolymerizating conditions. Reversible cycles of disassembly and reassembly were carried out using taxol-containing microtubules from calf brain and sea urchin eggs by shifting temperature in the presence of millimolar levels of Ca2+. Microtubules depolymerized completely, yielding dimers and ring-shaped oligomers as revealed by negative stain electron microscopy and Bio-Gel A-15m chromatography, and reassembled into well-formed microtubule polymer structures. Microtubule-associated proteins (MAPs), including species previously identified only by taxol-based purification such as MAP 1B and kinesin, were found to copurify with tubulin through reversible assembly cycles. To determine whether taxol remained bound to tubulin subunits, we subjected depolymerized taxol-treated microtubule protein to Sephadex G-25 chromatography, and the fractions were assayed for taxol content by reverse-phase HPLC. Taxol was found to be dissociated from the depolymerized microtubules. Protein treated in this way was found to be competent to reassemble, but now required conditions comparable with those for protein that had never been exposed to taxol. Thus, the binding of taxol to tubulin can be reversed. This has implications for the mechanism of taxol action and for the purification of microtubules from a wide variety of sources for use in self-assembly experiments. The Rockefeller University Press 1987-12-01 /pmc/articles/PMC2114708/ /pubmed/2891714 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Temperature-dependent reversible assembly of taxol-treated microtubules
title Temperature-dependent reversible assembly of taxol-treated microtubules
title_full Temperature-dependent reversible assembly of taxol-treated microtubules
title_fullStr Temperature-dependent reversible assembly of taxol-treated microtubules
title_full_unstemmed Temperature-dependent reversible assembly of taxol-treated microtubules
title_short Temperature-dependent reversible assembly of taxol-treated microtubules
title_sort temperature-dependent reversible assembly of taxol-treated microtubules
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114708/
https://www.ncbi.nlm.nih.gov/pubmed/2891714