Cargando…

Identification of agrin, a synaptic organizing protein from Torpedo electric organ

Extracts of the electric organ of Torpedo californica contain a proteinaceous factor that causes the formation of patches on cultured myotubes at which acetylcholine receptors (AChR), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) are concentrated. Results of previous experiments ind...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1987
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114709/
https://www.ncbi.nlm.nih.gov/pubmed/2826489
_version_ 1782140483910238208
collection PubMed
description Extracts of the electric organ of Torpedo californica contain a proteinaceous factor that causes the formation of patches on cultured myotubes at which acetylcholine receptors (AChR), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) are concentrated. Results of previous experiments indicate that this factor is similar to the molecules in the synaptic basal lamina that direct the aggregation of AChR and AChE at regenerating neuromuscular junctions in vivo. We have purified the active components in the extracts 9,000-fold. mAbs against four different epitopes on the AChR/AChE/BuChE-aggregating molecules each immunoprecipitated four polypeptides from electric organ extracts, with molecular masses of 150, 135, 95, and 70 kD. Gel filtration chromatography of electric organ extracts revealed two peaks of AChR/AChE/BuChE-aggregation activity; one comigrated with the 150-kD polypeptide, the other with the 95-kD polypeptide. The 135- and 70-kD polypeptides did not cause AChR/AChE/BuChE aggregation. Based on these molecular characteristics and on the pattern of staining seen in sections of muscle labeled with the mAbs, we conclude that the electric organ-aggregating factor is distinct from previously identified molecules, and we have named it "agrin."
format Text
id pubmed-2114709
institution National Center for Biotechnology Information
language English
publishDate 1987
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21147092008-05-01 Identification of agrin, a synaptic organizing protein from Torpedo electric organ J Cell Biol Articles Extracts of the electric organ of Torpedo californica contain a proteinaceous factor that causes the formation of patches on cultured myotubes at which acetylcholine receptors (AChR), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) are concentrated. Results of previous experiments indicate that this factor is similar to the molecules in the synaptic basal lamina that direct the aggregation of AChR and AChE at regenerating neuromuscular junctions in vivo. We have purified the active components in the extracts 9,000-fold. mAbs against four different epitopes on the AChR/AChE/BuChE-aggregating molecules each immunoprecipitated four polypeptides from electric organ extracts, with molecular masses of 150, 135, 95, and 70 kD. Gel filtration chromatography of electric organ extracts revealed two peaks of AChR/AChE/BuChE-aggregation activity; one comigrated with the 150-kD polypeptide, the other with the 95-kD polypeptide. The 135- and 70-kD polypeptides did not cause AChR/AChE/BuChE aggregation. Based on these molecular characteristics and on the pattern of staining seen in sections of muscle labeled with the mAbs, we conclude that the electric organ-aggregating factor is distinct from previously identified molecules, and we have named it "agrin." The Rockefeller University Press 1987-12-01 /pmc/articles/PMC2114709/ /pubmed/2826489 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Identification of agrin, a synaptic organizing protein from Torpedo electric organ
title Identification of agrin, a synaptic organizing protein from Torpedo electric organ
title_full Identification of agrin, a synaptic organizing protein from Torpedo electric organ
title_fullStr Identification of agrin, a synaptic organizing protein from Torpedo electric organ
title_full_unstemmed Identification of agrin, a synaptic organizing protein from Torpedo electric organ
title_short Identification of agrin, a synaptic organizing protein from Torpedo electric organ
title_sort identification of agrin, a synaptic organizing protein from torpedo electric organ
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114709/
https://www.ncbi.nlm.nih.gov/pubmed/2826489