Cargando…

Rat basophilic leukemia cells stiffen when they secrete

RBL cells provide a useful model of the IgE and antigen-dependent stimulus-secretion coupling of mast cells and basophils. We have measured cellular deformability to investigate the participation of cytoskeletal mechanical changes. Cross-linking cell-surface IgE- receptor complexes with multivalent...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1987
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114718/
https://www.ncbi.nlm.nih.gov/pubmed/2961769
_version_ 1782140486132170752
collection PubMed
description RBL cells provide a useful model of the IgE and antigen-dependent stimulus-secretion coupling of mast cells and basophils. We have measured cellular deformability to investigate the participation of cytoskeletal mechanical changes. Cross-linking cell-surface IgE- receptor complexes with multivalent ligands not only triggered secretion but also caused the cells to stiffen, i.e., to become more resistant to deformation. This mechanical response required receptor cross-linking, had a time course similar to that of secretion, and was reversed by DNP-L-lysine, a competitive inhibitor of antigen binding. Hence the same stimulus seems to elicit both stiffening and secretion. Cytochalasin D, which inhibits actin filament assembly, prevented or reversed stiffening, thereby implicating the cytoskeleton in the mechanical response. Increasing intracellular calcium ion concentration with the ionophore A23187 stiffened cells and stimulated secretion. Activation of protein kinase C with a phorbol ester also stiffened cells and enhanced both the stiffening and secretion caused by the ionophore. Yet cytochalasin D enhances secretion whereas activation of protein kinase c alone is insufficient for secretion. Therefore stiffening is neither necessary nor sufficient for secretion. These results characterize a cytoskeletal mechanical response triggered by the same receptor-dependent stimulus that elicits secretion and by second messengers that are thought to mediate between the receptor signal and secretion. The function of the mechanical response, however, remains to be determined.
format Text
id pubmed-2114718
institution National Center for Biotechnology Information
language English
publishDate 1987
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21147182008-05-01 Rat basophilic leukemia cells stiffen when they secrete J Cell Biol Articles RBL cells provide a useful model of the IgE and antigen-dependent stimulus-secretion coupling of mast cells and basophils. We have measured cellular deformability to investigate the participation of cytoskeletal mechanical changes. Cross-linking cell-surface IgE- receptor complexes with multivalent ligands not only triggered secretion but also caused the cells to stiffen, i.e., to become more resistant to deformation. This mechanical response required receptor cross-linking, had a time course similar to that of secretion, and was reversed by DNP-L-lysine, a competitive inhibitor of antigen binding. Hence the same stimulus seems to elicit both stiffening and secretion. Cytochalasin D, which inhibits actin filament assembly, prevented or reversed stiffening, thereby implicating the cytoskeleton in the mechanical response. Increasing intracellular calcium ion concentration with the ionophore A23187 stiffened cells and stimulated secretion. Activation of protein kinase C with a phorbol ester also stiffened cells and enhanced both the stiffening and secretion caused by the ionophore. Yet cytochalasin D enhances secretion whereas activation of protein kinase c alone is insufficient for secretion. Therefore stiffening is neither necessary nor sufficient for secretion. These results characterize a cytoskeletal mechanical response triggered by the same receptor-dependent stimulus that elicits secretion and by second messengers that are thought to mediate between the receptor signal and secretion. The function of the mechanical response, however, remains to be determined. The Rockefeller University Press 1987-12-01 /pmc/articles/PMC2114718/ /pubmed/2961769 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Rat basophilic leukemia cells stiffen when they secrete
title Rat basophilic leukemia cells stiffen when they secrete
title_full Rat basophilic leukemia cells stiffen when they secrete
title_fullStr Rat basophilic leukemia cells stiffen when they secrete
title_full_unstemmed Rat basophilic leukemia cells stiffen when they secrete
title_short Rat basophilic leukemia cells stiffen when they secrete
title_sort rat basophilic leukemia cells stiffen when they secrete
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114718/
https://www.ncbi.nlm.nih.gov/pubmed/2961769