Cargando…

Tubulin interaction with kinetochore proteins: analysis by in vitro assembly and chemical cross-linking

The sera from patients with the CREST (calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, telangiectasia) variation of the autoimmune disease scleroderma contain autoantibodies that specifically recognize the kinetochore by immunofluorescence. Two major antigens of molecul...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1987
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114760/
https://www.ncbi.nlm.nih.gov/pubmed/3305522
_version_ 1782140496346349568
collection PubMed
description The sera from patients with the CREST (calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, telangiectasia) variation of the autoimmune disease scleroderma contain autoantibodies that specifically recognize the kinetochore by immunofluorescence. Two major antigens of molecular masses 18 and 80 kD are consistently identified by Western blotting of proteins of isolated chromosomes using CREST sera. In this paper, the possible roles that these two proteins play in the interaction of metaphase chromosomes with tubulin and microtubules are examined using two different procedures. In one set of experiments. Chinese hamster ovary (CHO) chromosomes were extracted with 1-2 M NaCl before incubating with phosphocellulose- purified tubulin under in vitro microtubule assembly conditions. After this treatment, the kinetochores of the residual chromosome scaffolds can still initiate the in vitro assembly of microtubules. Immunoblots of the chromosome scaffold proteins demonstrate that the 18-kD protein has been solubilized by the 1-2 M NaCl extraction, suggesting that this protein is not essential for microtubule assembly at the kinetochore. In a second approach, tubulin was covalently cross-linked to kinetochores of CHO chromosomes using the reversible cross-linking reagent dithiobis (succinimidyl propionate). After DNase I digestion, the chromosomes were solubilized and subjected to anti-tubulin affinity chromatography. Tubulin-kinetochore protein complexes were specifically eluted and analyzed by PAGE and immunoblotting with scleroderma CREST serum. Only a small number of proteins were eluted from the antitubulin affinity column as shown by Coomassie Blue-stained gels. In addition to tubulin, an 80-kD polypeptide, bands at 110 and 24 kD, as well as a faint band at 54 kD, can be resolved. Several minor bands can also be seen in silver-stained gels. The 80-kD protein band from whole metaphase chromosomes reacted with scleroderma CREST serum by immunoblotting and therefore probably represents the major centromere antigen CENP-B. This report provides evidence for a specific protein complex on metaphase chromosomes that is contiguous with kinetochore- bound tubulin and may be involved in microtubule-kinetochore interactions during mitosis.
format Text
id pubmed-2114760
institution National Center for Biotechnology Information
language English
publishDate 1987
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21147602008-05-01 Tubulin interaction with kinetochore proteins: analysis by in vitro assembly and chemical cross-linking J Cell Biol Articles The sera from patients with the CREST (calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, telangiectasia) variation of the autoimmune disease scleroderma contain autoantibodies that specifically recognize the kinetochore by immunofluorescence. Two major antigens of molecular masses 18 and 80 kD are consistently identified by Western blotting of proteins of isolated chromosomes using CREST sera. In this paper, the possible roles that these two proteins play in the interaction of metaphase chromosomes with tubulin and microtubules are examined using two different procedures. In one set of experiments. Chinese hamster ovary (CHO) chromosomes were extracted with 1-2 M NaCl before incubating with phosphocellulose- purified tubulin under in vitro microtubule assembly conditions. After this treatment, the kinetochores of the residual chromosome scaffolds can still initiate the in vitro assembly of microtubules. Immunoblots of the chromosome scaffold proteins demonstrate that the 18-kD protein has been solubilized by the 1-2 M NaCl extraction, suggesting that this protein is not essential for microtubule assembly at the kinetochore. In a second approach, tubulin was covalently cross-linked to kinetochores of CHO chromosomes using the reversible cross-linking reagent dithiobis (succinimidyl propionate). After DNase I digestion, the chromosomes were solubilized and subjected to anti-tubulin affinity chromatography. Tubulin-kinetochore protein complexes were specifically eluted and analyzed by PAGE and immunoblotting with scleroderma CREST serum. Only a small number of proteins were eluted from the antitubulin affinity column as shown by Coomassie Blue-stained gels. In addition to tubulin, an 80-kD polypeptide, bands at 110 and 24 kD, as well as a faint band at 54 kD, can be resolved. Several minor bands can also be seen in silver-stained gels. The 80-kD protein band from whole metaphase chromosomes reacted with scleroderma CREST serum by immunoblotting and therefore probably represents the major centromere antigen CENP-B. This report provides evidence for a specific protein complex on metaphase chromosomes that is contiguous with kinetochore- bound tubulin and may be involved in microtubule-kinetochore interactions during mitosis. The Rockefeller University Press 1987-08-01 /pmc/articles/PMC2114760/ /pubmed/3305522 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Tubulin interaction with kinetochore proteins: analysis by in vitro assembly and chemical cross-linking
title Tubulin interaction with kinetochore proteins: analysis by in vitro assembly and chemical cross-linking
title_full Tubulin interaction with kinetochore proteins: analysis by in vitro assembly and chemical cross-linking
title_fullStr Tubulin interaction with kinetochore proteins: analysis by in vitro assembly and chemical cross-linking
title_full_unstemmed Tubulin interaction with kinetochore proteins: analysis by in vitro assembly and chemical cross-linking
title_short Tubulin interaction with kinetochore proteins: analysis by in vitro assembly and chemical cross-linking
title_sort tubulin interaction with kinetochore proteins: analysis by in vitro assembly and chemical cross-linking
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114760/
https://www.ncbi.nlm.nih.gov/pubmed/3305522