Cargando…
Identification and characterization of a mouse cell mutant defective in the intracellular transport of glycoproteins
We have isolated a mutant line of mouse L cells, termed gro29, in which the growth of herpes simplex virus (HSV) and vesicular stomatitis virus (VSV) is defective. The block occurs late in the infectious cycle of both viruses. We demonstrate that HSV and VSV enter gro29 cells normally, negotiate the...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1987
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114779/ https://www.ncbi.nlm.nih.gov/pubmed/3040769 |
Sumario: | We have isolated a mutant line of mouse L cells, termed gro29, in which the growth of herpes simplex virus (HSV) and vesicular stomatitis virus (VSV) is defective. The block occurs late in the infectious cycle of both viruses. We demonstrate that HSV and VSV enter gro29 cells normally, negotiate the early stages of infection, yet are impaired at a late stage of virus maturation. During VSV infection of the mutant cell line, intracellular transport of its glycoprotein (G protein) is slowed. Pulse-chase experiments showed that oligosaccharide processing is impeded, and immunofluorescence localization revealed an accumulation of G protein in a juxtanuclear region that contains the Golgi complex. We conclude that export of newly made glycoproteins is defective in gro29 cells, and speculate that this defect may reflect a lesion in the glycoprotein transport apparatus. |
---|