Cargando…

An optional dyadic junctional complex revealed by fast-freeze fixation in the bioluminescent system of the scale worm

In the bioluminescent system of the scale worm, the facilitation of the successive flashes is correlated with the progressive recruitment, in each photogenic cell, of new units of activity, the photosomes. To characterize morphologically the coupled state of the photosomes, known to decouple within...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1987
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114837/
https://www.ncbi.nlm.nih.gov/pubmed/3680381
Descripción
Sumario:In the bioluminescent system of the scale worm, the facilitation of the successive flashes is correlated with the progressive recruitment, in each photogenic cell, of new units of activity, the photosomes. To characterize morphologically the coupled state of the photosomes, known to decouple within seconds at rest, fast-freeze fixation was applied to stimulated and nonstimulated elytra and followed by substitution with OsO4 in acetone. The results showed striking differences. Photosomes were surrounded by a new type of smooth endoplasmic reticulum (ER) called intermediate endoplasmic reticulum (IER). In nonstimulated elytra, the IER was most often unattached in the cytoplasm. After stimulation, the IER was connected to large terminal saccules that formed dyad junctions with the plasma membrane. Most of these junctional complexes were symmetrical (triads) and occurred in front of narrow extracellular spaces. These spaces were either constitutive, like invaginations or clefts along adjacent cells and adjacent pouches, or resulted from the pairing of long pseudopods which expanded into a wide extracellular compartment and twisted together in a dynamic process. In that the junctional complexes developed progressively under repeated stimulation and coupled more and more photosomes, they must represent a route constituted by the ER for the propagation of internal conduction. The dynamics of coupling involve membrane growth, recognition, and transformation on a surprisingly large scale and in a surprisingly short time.