Cargando…
Cytokinesis is defective in Dictyostelium mutants with altered phagocytic recognition, adhesion, and vegetative cell cohesion properties
Mutants that have been selected for defects in phagocytic recognition, adhesion, and vegetative cell-cell cohesion were found to be larger and more highly multinucleate than their parent strain. This defect is associated with the complex mutant phenotype of these mutants since revertants of the muta...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1987
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114847/ https://www.ncbi.nlm.nih.gov/pubmed/3680383 |
_version_ | 1782140517149048832 |
---|---|
collection | PubMed |
description | Mutants that have been selected for defects in phagocytic recognition, adhesion, and vegetative cell-cell cohesion were found to be larger and more highly multinucleate than their parent strain. This defect is associated with the complex mutant phenotype of these mutants since revertants of the mutants coordinately acquire the wild-type phenotype for all of the defects. The larger size and multinuclearity were due to a high frequency of failure of cytokinesis in cells of wild-type size. This was shown by purifying the small cells in mutant populations and observing their growth and cell division. The mutant phenotype is more penetrant during axenic growth. Most of the mutants are not multinucleate when grown on bacteria. Recently, new mutants have been isolated that are also multinucleate when grown on bacteria by a strong selection procedure for non-adhesion to tissue culture dishes. The pleiotropic mutant phenotype and the greater penetrance of the mutant phenotype in axenic culture can be explained by hypothesizing a deficiency in a membrane component of the actomyosin motor that is involved in all of the processes defective in the mutants. |
format | Text |
id | pubmed-2114847 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1987 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21148472008-05-01 Cytokinesis is defective in Dictyostelium mutants with altered phagocytic recognition, adhesion, and vegetative cell cohesion properties J Cell Biol Articles Mutants that have been selected for defects in phagocytic recognition, adhesion, and vegetative cell-cell cohesion were found to be larger and more highly multinucleate than their parent strain. This defect is associated with the complex mutant phenotype of these mutants since revertants of the mutants coordinately acquire the wild-type phenotype for all of the defects. The larger size and multinuclearity were due to a high frequency of failure of cytokinesis in cells of wild-type size. This was shown by purifying the small cells in mutant populations and observing their growth and cell division. The mutant phenotype is more penetrant during axenic growth. Most of the mutants are not multinucleate when grown on bacteria. Recently, new mutants have been isolated that are also multinucleate when grown on bacteria by a strong selection procedure for non-adhesion to tissue culture dishes. The pleiotropic mutant phenotype and the greater penetrance of the mutant phenotype in axenic culture can be explained by hypothesizing a deficiency in a membrane component of the actomyosin motor that is involved in all of the processes defective in the mutants. The Rockefeller University Press 1987-11-01 /pmc/articles/PMC2114847/ /pubmed/3680383 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Cytokinesis is defective in Dictyostelium mutants with altered phagocytic recognition, adhesion, and vegetative cell cohesion properties |
title | Cytokinesis is defective in Dictyostelium mutants with altered phagocytic recognition, adhesion, and vegetative cell cohesion properties |
title_full | Cytokinesis is defective in Dictyostelium mutants with altered phagocytic recognition, adhesion, and vegetative cell cohesion properties |
title_fullStr | Cytokinesis is defective in Dictyostelium mutants with altered phagocytic recognition, adhesion, and vegetative cell cohesion properties |
title_full_unstemmed | Cytokinesis is defective in Dictyostelium mutants with altered phagocytic recognition, adhesion, and vegetative cell cohesion properties |
title_short | Cytokinesis is defective in Dictyostelium mutants with altered phagocytic recognition, adhesion, and vegetative cell cohesion properties |
title_sort | cytokinesis is defective in dictyostelium mutants with altered phagocytic recognition, adhesion, and vegetative cell cohesion properties |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114847/ https://www.ncbi.nlm.nih.gov/pubmed/3680383 |