Cargando…

Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas reinhardtii

When Chlamydomonas reinhardtii gametes of opposite mating type are mixed together, they adhere by a flagella-mediated agglutination that triggers three rapid mating responses: flagellar tip activation, cell wall loss, and mating structure activation accompanied by actin polymerization. Here we show...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1987
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114871/
https://www.ncbi.nlm.nih.gov/pubmed/2824527
_version_ 1782140522752638976
collection PubMed
description When Chlamydomonas reinhardtii gametes of opposite mating type are mixed together, they adhere by a flagella-mediated agglutination that triggers three rapid mating responses: flagellar tip activation, cell wall loss, and mating structure activation accompanied by actin polymerization. Here we show that a transient 10-fold elevation of intracellular cAMP levels is also triggered by sexual agglutination. We further show that gametes of a single mating type can be induced to undergo all three mating responses when presented with exogenous dibutyryl-cAMP (db-cAMP). These events are also induced by cyclic nucleotide phosphodiesterase inhibitors, which elevate endogenous cAMP levels and act synergistically with db-cAMP. Non-agglutinating mutants of opposite mating type will fuse efficiently in the presence of db- cAMP. No activation of mating events is induced by calcium plus ionophores, 8-bromo-cGMP, dibutyryl-cGMP, nigericin at alkaline pH, phorbol esters, or forskolin. H-8, an inhibitor of cyclic nucleotide- dependent protein kinase, inhibits mating events in agglutinating cells and antagonizes the effects of cAMP on non-agglutinating cells. Adenylate cyclase activity was detected in both the gamete cell body and flagella, with the highest specific activity displayed in flagellar membrane fractions. The flagellar membrane adenylate cyclase is preferentially stimulated by Mn++, unresponsive to NaF, GTP, GTP gamma S, AlF4-, and forskolin, and is inhibited by trifluoperazine. Cyclic nucleotide phosphodiesterase activity is also present in flagella. Our observations indicate that cAMP is a sufficient initial signal for all of the known mating reaction events in C. reinhardtii, and suggest that the flagellar cyclase and/or phosphodiesterase may be important loci of control for the agglutination-stimulated production of this signal.
format Text
id pubmed-2114871
institution National Center for Biotechnology Information
language English
publishDate 1987
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21148712008-05-01 Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas reinhardtii J Cell Biol Articles When Chlamydomonas reinhardtii gametes of opposite mating type are mixed together, they adhere by a flagella-mediated agglutination that triggers three rapid mating responses: flagellar tip activation, cell wall loss, and mating structure activation accompanied by actin polymerization. Here we show that a transient 10-fold elevation of intracellular cAMP levels is also triggered by sexual agglutination. We further show that gametes of a single mating type can be induced to undergo all three mating responses when presented with exogenous dibutyryl-cAMP (db-cAMP). These events are also induced by cyclic nucleotide phosphodiesterase inhibitors, which elevate endogenous cAMP levels and act synergistically with db-cAMP. Non-agglutinating mutants of opposite mating type will fuse efficiently in the presence of db- cAMP. No activation of mating events is induced by calcium plus ionophores, 8-bromo-cGMP, dibutyryl-cGMP, nigericin at alkaline pH, phorbol esters, or forskolin. H-8, an inhibitor of cyclic nucleotide- dependent protein kinase, inhibits mating events in agglutinating cells and antagonizes the effects of cAMP on non-agglutinating cells. Adenylate cyclase activity was detected in both the gamete cell body and flagella, with the highest specific activity displayed in flagellar membrane fractions. The flagellar membrane adenylate cyclase is preferentially stimulated by Mn++, unresponsive to NaF, GTP, GTP gamma S, AlF4-, and forskolin, and is inhibited by trifluoperazine. Cyclic nucleotide phosphodiesterase activity is also present in flagella. Our observations indicate that cAMP is a sufficient initial signal for all of the known mating reaction events in C. reinhardtii, and suggest that the flagellar cyclase and/or phosphodiesterase may be important loci of control for the agglutination-stimulated production of this signal. The Rockefeller University Press 1987-11-01 /pmc/articles/PMC2114871/ /pubmed/2824527 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas reinhardtii
title Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas reinhardtii
title_full Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas reinhardtii
title_fullStr Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas reinhardtii
title_full_unstemmed Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas reinhardtii
title_short Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas reinhardtii
title_sort cyclic amp functions as a primary sexual signal in gametes of chlamydomonas reinhardtii
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114871/
https://www.ncbi.nlm.nih.gov/pubmed/2824527