Cargando…
Postpolymerization detyrosination of alpha-tubulin: a mechanism for subcellular differentiation of microtubules
Tyrosinated (Tyr) and detyrosinated (Glu) alpha-tubulin, species interconverted by posttranslational modification, are largely segregated in separate populations of microtubules in interphase cultured cells. We sought to understand how distinct Tyr and Glu microtubules are generated in vivo, by exam...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1987
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114889/ https://www.ncbi.nlm.nih.gov/pubmed/2886509 |
_version_ | 1782140527031877632 |
---|---|
collection | PubMed |
description | Tyrosinated (Tyr) and detyrosinated (Glu) alpha-tubulin, species interconverted by posttranslational modification, are largely segregated in separate populations of microtubules in interphase cultured cells. We sought to understand how distinct Tyr and Glu microtubules are generated in vivo, by examining time-dependent alterations in Tyr and Glu tubulin levels (by immunoblots probed with antibodies specific for each species) and distributions (by immunofluorescence) after microtubule regrowth and stabilization. When microtubules were allowed to regrow after complete depolymerization by microtubule antagonists, Glu microtubules reappeared with a delay of approximately 25 min after the complete array of Tyr microtubules had regrown. In these experiments, Tyr tubulin immunofluorescence first appeared as an aster of distinct microtubules, while Glu tubulin staining first appeared as a grainy pattern that was not altered by detergent extraction, suggesting that Glu microtubules were created by detyrosination of Tyr microtubules. Treatments with taxol, azide, or vinblastine, to stabilize polymeric tubulin, all resulted in time- dependent increases in polymeric Glu tubulin levels, further supporting the hypothesis of postpolymerization detyrosination. Analysis of monomer and polymer fractions during microtubule regrowth and in microtubule stabilization experiments were also consistent with postpolymerization detyrosination; in each case, Glu polymer levels increased in the absence of detectable Glu monomer. The low level of Glu monomer in untreated or nocodazole-treated cells (we estimate that Glu tubulin comprises less than 2% of the monomer pool) also suggested that Glu tubulin entering the monomer pool is efficiently retyrosinated. Taken together these results demonstrate that microtubules are polymerized from Tyr tubulin and are then rapidly converted to Glu microtubules. When Glu microtubules depolymerize, the resulting Glu monomer is retyrosinated. This cycle generates structurally, and perhaps functionally, distinct microtubules. |
format | Text |
id | pubmed-2114889 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1987 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21148892008-05-01 Postpolymerization detyrosination of alpha-tubulin: a mechanism for subcellular differentiation of microtubules J Cell Biol Articles Tyrosinated (Tyr) and detyrosinated (Glu) alpha-tubulin, species interconverted by posttranslational modification, are largely segregated in separate populations of microtubules in interphase cultured cells. We sought to understand how distinct Tyr and Glu microtubules are generated in vivo, by examining time-dependent alterations in Tyr and Glu tubulin levels (by immunoblots probed with antibodies specific for each species) and distributions (by immunofluorescence) after microtubule regrowth and stabilization. When microtubules were allowed to regrow after complete depolymerization by microtubule antagonists, Glu microtubules reappeared with a delay of approximately 25 min after the complete array of Tyr microtubules had regrown. In these experiments, Tyr tubulin immunofluorescence first appeared as an aster of distinct microtubules, while Glu tubulin staining first appeared as a grainy pattern that was not altered by detergent extraction, suggesting that Glu microtubules were created by detyrosination of Tyr microtubules. Treatments with taxol, azide, or vinblastine, to stabilize polymeric tubulin, all resulted in time- dependent increases in polymeric Glu tubulin levels, further supporting the hypothesis of postpolymerization detyrosination. Analysis of monomer and polymer fractions during microtubule regrowth and in microtubule stabilization experiments were also consistent with postpolymerization detyrosination; in each case, Glu polymer levels increased in the absence of detectable Glu monomer. The low level of Glu monomer in untreated or nocodazole-treated cells (we estimate that Glu tubulin comprises less than 2% of the monomer pool) also suggested that Glu tubulin entering the monomer pool is efficiently retyrosinated. Taken together these results demonstrate that microtubules are polymerized from Tyr tubulin and are then rapidly converted to Glu microtubules. When Glu microtubules depolymerize, the resulting Glu monomer is retyrosinated. This cycle generates structurally, and perhaps functionally, distinct microtubules. The Rockefeller University Press 1987-07-01 /pmc/articles/PMC2114889/ /pubmed/2886509 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Postpolymerization detyrosination of alpha-tubulin: a mechanism for subcellular differentiation of microtubules |
title | Postpolymerization detyrosination of alpha-tubulin: a mechanism for subcellular differentiation of microtubules |
title_full | Postpolymerization detyrosination of alpha-tubulin: a mechanism for subcellular differentiation of microtubules |
title_fullStr | Postpolymerization detyrosination of alpha-tubulin: a mechanism for subcellular differentiation of microtubules |
title_full_unstemmed | Postpolymerization detyrosination of alpha-tubulin: a mechanism for subcellular differentiation of microtubules |
title_short | Postpolymerization detyrosination of alpha-tubulin: a mechanism for subcellular differentiation of microtubules |
title_sort | postpolymerization detyrosination of alpha-tubulin: a mechanism for subcellular differentiation of microtubules |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114889/ https://www.ncbi.nlm.nih.gov/pubmed/2886509 |