Cargando…

A single histone acetyltransferase from Tetrahymena macronuclei catalyzes deposition-related acetylation of free histones and transcription-related acetylation of nucleosomal histones

A salt-extracted histone acetyltransferase activity from Tetrahymena macronuclei acetylates mostly histone H3 and H4 when free histones are used as substrate. Free histone H4 is acetylated first at position 11 (monoacetylated) or positions 11 and 4 (diacetylated). This activity strongly resembles in...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1987
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114890/
https://www.ncbi.nlm.nih.gov/pubmed/3611182
Descripción
Sumario:A salt-extracted histone acetyltransferase activity from Tetrahymena macronuclei acetylates mostly histone H3 and H4 when free histones are used as substrate. Free histone H4 is acetylated first at position 11 (monoacetylated) or positions 11 and 4 (diacetylated). This activity strongly resembles in vivo, deposition-related acetylation of newly synthesized histones. When acetylase-free mononucleosomes are used as substrate, all four core histones are acetylated by the same extract, and H4 is acetylated first at position 7 (monoacetylated) or positions 7 and 4 (diacetylated). In this respect, the activity of the extract is indistinguishable from postsynthetic, transcription-related histone acetylation that occurs in vivo or in isolated nuclei. Heat inactivation curves with both substrates are indistinguishable, and free histones compete with chromatin for limiting amounts of enzyme activity. These results argue strongly that two distinct, biologically important histone acetylations, one deposition related and one transcription related, are carried out by a single acetyltransferase.