Cargando…

A three-dimensional approach to mitotic chromosome structure: evidence for a complex hierarchical organization

We describe findings on the architecture of Drosophila melanogaster mitotic chromosomes, made using a three-dimensional-oriented structural approach. Using high-voltage and conventional transmission electron microscopy combined with axial tomography and digital contrast- enhancement techniques, we h...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1987
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114920/
https://www.ncbi.nlm.nih.gov/pubmed/3112167
Descripción
Sumario:We describe findings on the architecture of Drosophila melanogaster mitotic chromosomes, made using a three-dimensional-oriented structural approach. Using high-voltage and conventional transmission electron microscopy combined with axial tomography and digital contrast- enhancement techniques, we have for the first time visualized significant structural detail within minimally perturbed mitotic chromosomes. Chromosomes prepared by several different preparative procedures showed a consistent size hierarchy of discrete chromatin structural domains with cross-sectional diameters of 120, 240, 400-500, and 800-1,000 A. In fully condensed, metaphase-arrested chromosomes, there is evidence for even larger-scale structural organization in the range of 1,300-3,000-A size. The observed intrachromosomal arrangements of these higher-order structural domains show that both the radial loop and sequential helical coiling models of chromosome structure are over- simplifications of the true situation. Finally, our results suggest that the pathway of chromatin condensation through mitosis consists of concurrent changes occurring at several levels of chromatin organization, rather than a strictly sequential folding process.