Cargando…

Ordered transmembrane and extracellular structure in squid photoreceptor microvilli

Invertebrate retinas contain hexagonal arrays of microvilli that form the honeycomb structure of rhabdome photoreceptors. The largest and most crystalline rhabdomes are found in the squid retina, and we have taken advantage of their unique properties to derive a model for the electron density distri...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1987
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114923/
https://www.ncbi.nlm.nih.gov/pubmed/3611185
_version_ 1782140535116398592
collection PubMed
description Invertebrate retinas contain hexagonal arrays of microvilli that form the honeycomb structure of rhabdome photoreceptors. The largest and most crystalline rhabdomes are found in the squid retina, and we have taken advantage of their unique properties to derive a model for the electron density distribution in microvillar membranes using low angle X-ray diffraction combined with correlation averaging of electron microscope images. The model electron density map, calculated to a resolution of approximately 35 A, shows an unusually high protein content in the membranes. This may be associated with a dense meshwork of membrane junctions between neighboring microvilli as revealed by electron microscope image analysis. Membrane pair contacts are resolved as two or more strands of density crossing the membranes. The microvilli are also linked together by Y-shaped junctions at their three-way contacts. These two sorts of junctions link the membranes into a three-dimensional array and partition them into a mosaic of deformable and rigid domains. This arrangement maintains a remarkable degree of long-range order in squid rhabdomes, and may be responsible for the alignment of rhodopsin molecules. The structural order observed is necessary for these photoreceptors to achieve their high sensitivity to the plane of polarized light. Rhodopsin constitutes about one-half the microvillar protein. The remaining proteins, which can be divided into approximately equal detergent-soluble and insoluble fractions, could account for the composition of the new structures described.
format Text
id pubmed-2114923
institution National Center for Biotechnology Information
language English
publishDate 1987
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21149232008-05-01 Ordered transmembrane and extracellular structure in squid photoreceptor microvilli J Cell Biol Articles Invertebrate retinas contain hexagonal arrays of microvilli that form the honeycomb structure of rhabdome photoreceptors. The largest and most crystalline rhabdomes are found in the squid retina, and we have taken advantage of their unique properties to derive a model for the electron density distribution in microvillar membranes using low angle X-ray diffraction combined with correlation averaging of electron microscope images. The model electron density map, calculated to a resolution of approximately 35 A, shows an unusually high protein content in the membranes. This may be associated with a dense meshwork of membrane junctions between neighboring microvilli as revealed by electron microscope image analysis. Membrane pair contacts are resolved as two or more strands of density crossing the membranes. The microvilli are also linked together by Y-shaped junctions at their three-way contacts. These two sorts of junctions link the membranes into a three-dimensional array and partition them into a mosaic of deformable and rigid domains. This arrangement maintains a remarkable degree of long-range order in squid rhabdomes, and may be responsible for the alignment of rhodopsin molecules. The structural order observed is necessary for these photoreceptors to achieve their high sensitivity to the plane of polarized light. Rhodopsin constitutes about one-half the microvillar protein. The remaining proteins, which can be divided into approximately equal detergent-soluble and insoluble fractions, could account for the composition of the new structures described. The Rockefeller University Press 1987-07-01 /pmc/articles/PMC2114923/ /pubmed/3611185 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Ordered transmembrane and extracellular structure in squid photoreceptor microvilli
title Ordered transmembrane and extracellular structure in squid photoreceptor microvilli
title_full Ordered transmembrane and extracellular structure in squid photoreceptor microvilli
title_fullStr Ordered transmembrane and extracellular structure in squid photoreceptor microvilli
title_full_unstemmed Ordered transmembrane and extracellular structure in squid photoreceptor microvilli
title_short Ordered transmembrane and extracellular structure in squid photoreceptor microvilli
title_sort ordered transmembrane and extracellular structure in squid photoreceptor microvilli
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114923/
https://www.ncbi.nlm.nih.gov/pubmed/3611185