Cargando…

Changes in villin synthesis and subcellular distribution during intestinal differentiation of HT29-18 clones

Brush border in enterocytes is a cell surface specialization intimately associated with terminal differentiation of these cells. HT29-18, a clone derived from the HT-29 human colonic adenocarcinoma cell line, and HT29-18-C1, a subclone from HT29-18 described in the companion paper (Huet, C., C. Sahu...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1987
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114929/
https://www.ncbi.nlm.nih.gov/pubmed/2440895
_version_ 1782140536549801984
collection PubMed
description Brush border in enterocytes is a cell surface specialization intimately associated with terminal differentiation of these cells. HT29-18, a clone derived from the HT-29 human colonic adenocarcinoma cell line, and HT29-18-C1, a subclone from HT29-18 described in the companion paper (Huet, C., C. Sahuquillo-Merino, E. Coudrier, and D. Louvard, 1987, J. Cell Biol., 105:345-357), undergo terminal differentiation with brush borders in the absence of glucose or upon replacement of glucose by galactose in the medium. Taking advantage of this clone and its subclone which can be manipulated in vitro, we have studied the synthesis and subcellular distribution of villin, one major protein in the microvillus core of the brush border. For this study, a monoclonal antibody against villin (BDID2C3) has been isolated and characterized in detail. In addition an ELISA has been set up to measure villin accurately in total cell extracts. Villin content in differentiated HT29-18 cells is close to that seen in normal human colonic cells but 10 times lower in undifferentiated HT29-18 cells. The rate of villin synthesis is dramatically increased in the course of enterocytic differentiation, while villin is remarkably stable after synthesis. We have recently shown, using a cDNA probe for villin, that this change is controlled either at the transcription level or by RNA stabilization (Pringault, E., M. Arpin, A. Garcia, J. Finidori, and D. Louvard, 1986, EMBO (Eur. Mol. Biol. Organ.) J., 5:3119-3124). As shown by immunofluorescence and immunogold labelings, villin is targeted to the brush border area of differentiated HT29-18 cells but remains diffusely distributed in undifferentiated ones.
format Text
id pubmed-2114929
institution National Center for Biotechnology Information
language English
publishDate 1987
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21149292008-05-01 Changes in villin synthesis and subcellular distribution during intestinal differentiation of HT29-18 clones J Cell Biol Articles Brush border in enterocytes is a cell surface specialization intimately associated with terminal differentiation of these cells. HT29-18, a clone derived from the HT-29 human colonic adenocarcinoma cell line, and HT29-18-C1, a subclone from HT29-18 described in the companion paper (Huet, C., C. Sahuquillo-Merino, E. Coudrier, and D. Louvard, 1987, J. Cell Biol., 105:345-357), undergo terminal differentiation with brush borders in the absence of glucose or upon replacement of glucose by galactose in the medium. Taking advantage of this clone and its subclone which can be manipulated in vitro, we have studied the synthesis and subcellular distribution of villin, one major protein in the microvillus core of the brush border. For this study, a monoclonal antibody against villin (BDID2C3) has been isolated and characterized in detail. In addition an ELISA has been set up to measure villin accurately in total cell extracts. Villin content in differentiated HT29-18 cells is close to that seen in normal human colonic cells but 10 times lower in undifferentiated HT29-18 cells. The rate of villin synthesis is dramatically increased in the course of enterocytic differentiation, while villin is remarkably stable after synthesis. We have recently shown, using a cDNA probe for villin, that this change is controlled either at the transcription level or by RNA stabilization (Pringault, E., M. Arpin, A. Garcia, J. Finidori, and D. Louvard, 1986, EMBO (Eur. Mol. Biol. Organ.) J., 5:3119-3124). As shown by immunofluorescence and immunogold labelings, villin is targeted to the brush border area of differentiated HT29-18 cells but remains diffusely distributed in undifferentiated ones. The Rockefeller University Press 1987-07-01 /pmc/articles/PMC2114929/ /pubmed/2440895 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Changes in villin synthesis and subcellular distribution during intestinal differentiation of HT29-18 clones
title Changes in villin synthesis and subcellular distribution during intestinal differentiation of HT29-18 clones
title_full Changes in villin synthesis and subcellular distribution during intestinal differentiation of HT29-18 clones
title_fullStr Changes in villin synthesis and subcellular distribution during intestinal differentiation of HT29-18 clones
title_full_unstemmed Changes in villin synthesis and subcellular distribution during intestinal differentiation of HT29-18 clones
title_short Changes in villin synthesis and subcellular distribution during intestinal differentiation of HT29-18 clones
title_sort changes in villin synthesis and subcellular distribution during intestinal differentiation of ht29-18 clones
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114929/
https://www.ncbi.nlm.nih.gov/pubmed/2440895