Cargando…

The L2/HNK-1 carbohydrate of neural cell adhesion molecules is involved in cell interactions

We investigated whether the L2/HNK-1 carbohydrate epitope, expressed by two unusual glycolipids and several neural adhesion molecules, including L1, neural cell adhesion molecule, J1, and the myelin- associated glycoprotein, is involved in adhesion. Monoclonal L2 antibodies, the L2/HNK-1-reactive, s...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1988
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114958/
https://www.ncbi.nlm.nih.gov/pubmed/2448311
_version_ 1782140543430557696
collection PubMed
description We investigated whether the L2/HNK-1 carbohydrate epitope, expressed by two unusual glycolipids and several neural adhesion molecules, including L1, neural cell adhesion molecule, J1, and the myelin- associated glycoprotein, is involved in adhesion. Monoclonal L2 antibodies, the L2/HNK-1-reactive, sulfate-3-glucuronyl residue carrying glycolipids (L2 glycolipid) and a tetrasaccharide derived from the L2 glycolipid (L2 tetrasaccharide) were added to microexplant cultures of early postnatal mouse cerebellum, and cell migration and process extension were monitored. On the substrate poly-D-lysine, Fab fragments of L2 antibodies, L2 glycolipid, and L2 tetrasaccharide inhibited outgrowth of astrocytic processes and migration of cell bodies, but only L2 glycolipid and L2 tetrasaccharide reduced neurite outgrowth. On laminin, L2 antibodies, L2 glycolipid, and L2 tetrasaccharide inhibited outgrowth of astrocytic processes. Additionally, L2 glycolipid and L2 tetrasaccharide inhibited cell migration and neurite outgrowth. Several negatively charged glycolipids, lipids, and saccharides were tested for control and found to have no effect on outgrowth patterns, except for sulfatide and heparin, which modified outgrowth patterns in a similar fashion as L2 glycolipid and L2 tetrasaccharide. On astrocytes none of the tested compounds interfered with explant outgrowth. In short-term adhesion assays L2 glycolipid, sulfatide, and heparin inhibited adhesion of neural cells to laminin. L2 glycolipid and sulfatide interfered with neuron to astrocyte and astrocyte to astrocyte adhesion, but not with neuron-neuron adhesion. The most straightforward interpretation of these observations is that the L2/HNK-1 carbohydrate and the sulfated carbohydrates, sulfatide and heparin, act as ligands in cell adhesion.
format Text
id pubmed-2114958
institution National Center for Biotechnology Information
language English
publishDate 1988
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21149582008-05-01 The L2/HNK-1 carbohydrate of neural cell adhesion molecules is involved in cell interactions J Cell Biol Articles We investigated whether the L2/HNK-1 carbohydrate epitope, expressed by two unusual glycolipids and several neural adhesion molecules, including L1, neural cell adhesion molecule, J1, and the myelin- associated glycoprotein, is involved in adhesion. Monoclonal L2 antibodies, the L2/HNK-1-reactive, sulfate-3-glucuronyl residue carrying glycolipids (L2 glycolipid) and a tetrasaccharide derived from the L2 glycolipid (L2 tetrasaccharide) were added to microexplant cultures of early postnatal mouse cerebellum, and cell migration and process extension were monitored. On the substrate poly-D-lysine, Fab fragments of L2 antibodies, L2 glycolipid, and L2 tetrasaccharide inhibited outgrowth of astrocytic processes and migration of cell bodies, but only L2 glycolipid and L2 tetrasaccharide reduced neurite outgrowth. On laminin, L2 antibodies, L2 glycolipid, and L2 tetrasaccharide inhibited outgrowth of astrocytic processes. Additionally, L2 glycolipid and L2 tetrasaccharide inhibited cell migration and neurite outgrowth. Several negatively charged glycolipids, lipids, and saccharides were tested for control and found to have no effect on outgrowth patterns, except for sulfatide and heparin, which modified outgrowth patterns in a similar fashion as L2 glycolipid and L2 tetrasaccharide. On astrocytes none of the tested compounds interfered with explant outgrowth. In short-term adhesion assays L2 glycolipid, sulfatide, and heparin inhibited adhesion of neural cells to laminin. L2 glycolipid and sulfatide interfered with neuron to astrocyte and astrocyte to astrocyte adhesion, but not with neuron-neuron adhesion. The most straightforward interpretation of these observations is that the L2/HNK-1 carbohydrate and the sulfated carbohydrates, sulfatide and heparin, act as ligands in cell adhesion. The Rockefeller University Press 1988-01-01 /pmc/articles/PMC2114958/ /pubmed/2448311 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
The L2/HNK-1 carbohydrate of neural cell adhesion molecules is involved in cell interactions
title The L2/HNK-1 carbohydrate of neural cell adhesion molecules is involved in cell interactions
title_full The L2/HNK-1 carbohydrate of neural cell adhesion molecules is involved in cell interactions
title_fullStr The L2/HNK-1 carbohydrate of neural cell adhesion molecules is involved in cell interactions
title_full_unstemmed The L2/HNK-1 carbohydrate of neural cell adhesion molecules is involved in cell interactions
title_short The L2/HNK-1 carbohydrate of neural cell adhesion molecules is involved in cell interactions
title_sort l2/hnk-1 carbohydrate of neural cell adhesion molecules is involved in cell interactions
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114958/
https://www.ncbi.nlm.nih.gov/pubmed/2448311