Cargando…

Mapping of the microvillar 110K-calmodulin complex: calmodulin- associated or -free fragments of the 110-kD polypeptide bind F-actin and retain ATPase activity

The 110K-calmodulin complex isolated from intestinal microvilli is an ATPase consisting of one polypeptide chain of 110 kD in association with three to four calmodulin molecules. This complex is presumably the link between the actin filaments in the microvillar core and the surrounding cell membrane...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1988
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114968/
https://www.ncbi.nlm.nih.gov/pubmed/2963011
_version_ 1782140545791950848
collection PubMed
description The 110K-calmodulin complex isolated from intestinal microvilli is an ATPase consisting of one polypeptide chain of 110 kD in association with three to four calmodulin molecules. This complex is presumably the link between the actin filaments in the microvillar core and the surrounding cell membrane. To study its structural regions, we have partially cleaved the 110K-calmodulin complex with alpha-chymotrypsin; calmodulin remains essentially intact under the conditions used. As determined by 125I-calmodulin overlays, ion exchange chromatography, and actin-binding assays, a 90-kD digest fragment generated in EGTA remains associated with calmodulin. The 90K-calmodulin complex binds actin in an ATP-reversible manner and decorates actin filaments with an arrow-head appearance similar to that found after incubation of F-actin with the parent complex; binding occurs in either calcium- or EGTA- containing buffers. ATPase activity of the 90-kD digest closely resembles the parent complex. In calcium a digest mixture containing fragments of 78 kD, a group of three at approximately 40 kD, and a 32- kD fragment (78-kD digest mixture) is generated with alpha-chymotrypsin at a longer incubation time; no association of these fragments with calmodulin is observed. Time courses of digestions and cyanogen bromide cleavage indicate that the 78-kD fragment derives from the 90-kD peptide. The 78-kD mixture can also hydrolyze ATP. Furthermore, removal of the calmodulin by ion exchange chromatography from this 78-kD mixture had no effect on the ATPase activity of the digest, indicating that the ATPase activity resides on the 110-kD polypeptide. The 78 kD, two of the three fragments at approximately 40 kD, and the 32-kD fragments associate with F-actin in an ATP-reversible manner. Electron microscopy of actin filaments after incubation with the 78-kD digest mixture reveals coated filaments, although the prominent arrowhead appearance characteristic of the parent complex is not observed. These data indicate that calmodulin is not required either for the ATPase activity or the ATP-reversible binding of the 110K-calmodulin complex to F-actin. In addition, since all the fragments that bind F-actin do so in an ATP-reversible manner, the sites required for F-actin binding and ATP reversibility likely reside nearby.
format Text
id pubmed-2114968
institution National Center for Biotechnology Information
language English
publishDate 1988
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21149682008-05-01 Mapping of the microvillar 110K-calmodulin complex: calmodulin- associated or -free fragments of the 110-kD polypeptide bind F-actin and retain ATPase activity J Cell Biol Articles The 110K-calmodulin complex isolated from intestinal microvilli is an ATPase consisting of one polypeptide chain of 110 kD in association with three to four calmodulin molecules. This complex is presumably the link between the actin filaments in the microvillar core and the surrounding cell membrane. To study its structural regions, we have partially cleaved the 110K-calmodulin complex with alpha-chymotrypsin; calmodulin remains essentially intact under the conditions used. As determined by 125I-calmodulin overlays, ion exchange chromatography, and actin-binding assays, a 90-kD digest fragment generated in EGTA remains associated with calmodulin. The 90K-calmodulin complex binds actin in an ATP-reversible manner and decorates actin filaments with an arrow-head appearance similar to that found after incubation of F-actin with the parent complex; binding occurs in either calcium- or EGTA- containing buffers. ATPase activity of the 90-kD digest closely resembles the parent complex. In calcium a digest mixture containing fragments of 78 kD, a group of three at approximately 40 kD, and a 32- kD fragment (78-kD digest mixture) is generated with alpha-chymotrypsin at a longer incubation time; no association of these fragments with calmodulin is observed. Time courses of digestions and cyanogen bromide cleavage indicate that the 78-kD fragment derives from the 90-kD peptide. The 78-kD mixture can also hydrolyze ATP. Furthermore, removal of the calmodulin by ion exchange chromatography from this 78-kD mixture had no effect on the ATPase activity of the digest, indicating that the ATPase activity resides on the 110-kD polypeptide. The 78 kD, two of the three fragments at approximately 40 kD, and the 32-kD fragments associate with F-actin in an ATP-reversible manner. Electron microscopy of actin filaments after incubation with the 78-kD digest mixture reveals coated filaments, although the prominent arrowhead appearance characteristic of the parent complex is not observed. These data indicate that calmodulin is not required either for the ATPase activity or the ATP-reversible binding of the 110K-calmodulin complex to F-actin. In addition, since all the fragments that bind F-actin do so in an ATP-reversible manner, the sites required for F-actin binding and ATP reversibility likely reside nearby. The Rockefeller University Press 1988-02-01 /pmc/articles/PMC2114968/ /pubmed/2963011 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Mapping of the microvillar 110K-calmodulin complex: calmodulin- associated or -free fragments of the 110-kD polypeptide bind F-actin and retain ATPase activity
title Mapping of the microvillar 110K-calmodulin complex: calmodulin- associated or -free fragments of the 110-kD polypeptide bind F-actin and retain ATPase activity
title_full Mapping of the microvillar 110K-calmodulin complex: calmodulin- associated or -free fragments of the 110-kD polypeptide bind F-actin and retain ATPase activity
title_fullStr Mapping of the microvillar 110K-calmodulin complex: calmodulin- associated or -free fragments of the 110-kD polypeptide bind F-actin and retain ATPase activity
title_full_unstemmed Mapping of the microvillar 110K-calmodulin complex: calmodulin- associated or -free fragments of the 110-kD polypeptide bind F-actin and retain ATPase activity
title_short Mapping of the microvillar 110K-calmodulin complex: calmodulin- associated or -free fragments of the 110-kD polypeptide bind F-actin and retain ATPase activity
title_sort mapping of the microvillar 110k-calmodulin complex: calmodulin- associated or -free fragments of the 110-kd polypeptide bind f-actin and retain atpase activity
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114968/
https://www.ncbi.nlm.nih.gov/pubmed/2963011