Cargando…
SEC11 is required for signal peptide processing and yeast cell growth
Among the collection of temperature-sensitive secretion mutants of Saccharomyces cerevisiae, sec11 mutant cells are uniquely defective in signal peptide processing of at least two different secretory proteins. At 37 degrees C, the restrictive growth temperature, sec11 cells accumulate core-glycosyla...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1988
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115025/ https://www.ncbi.nlm.nih.gov/pubmed/3283143 |
Sumario: | Among the collection of temperature-sensitive secretion mutants of Saccharomyces cerevisiae, sec11 mutant cells are uniquely defective in signal peptide processing of at least two different secretory proteins. At 37 degrees C, the restrictive growth temperature, sec11 cells accumulate core-glycosylated forms of invertase and acid phosphatase, each retaining an intact signal peptide. In contrast, other sec mutant strains in which transport of core-glycosylated molecules from the endoplasmic reticulum is blocked show no defect in signal peptide cleavage. A DNA fragment that complements the sec11-7 mutation has been cloned. Genetic analysis indicates that the complementing clone contains the authentic SEC11 gene, and that a null mutation at the SEC11 locus is lethal. The DNA sequence of SEC11 predicts a basic protein (estimated pI of 9.5) of 167 amino acids including an NH2- terminal hydrophobic region that may function as a signal and/or membrane anchor domain. One potential N-glycosylation site is found in the 18.8-kD (Sec 11p) predicted protein. The mass of the SEC11 protein is very close to that found for two of the subunits of the canine and hen oviduct signal peptidases. Furthermore, the chromatographic behavior of the hen oviduct enzyme indicates an overall basic charge comparable to the predicted pI of the Sec11p. |
---|